Coupling and Unimodularity in Stationary Settings

James Thomas Murphy III Advisor: François Baccelli

April 26, 2019

Outline

This thesis is primarily comprised of 3 papers about:

- (i) Exact Coupling of Random Walks,
- (ii) Doeblin Trees,
- (iii) Point-shifts of Point Processes on Groups.

This talk will cover the first two.

Exact Coupling

Definition (Thorisson [3], 2000.)

A successful exact coupling is a triple $((S_n)_n, (S'_n)_n, T)$ of two processes and an a.s. finite random time such that

$$S_n = S'_n, \qquad n \geqslant T.$$

Why do this? If there is a successful exact coupling, then

$$\left\|\mathbf{P}(S_n \in \cdot) - \mathbf{P}(S_n' \in \cdot)\right\|_{\mathsf{TV}} \to 0, \qquad n \to \infty.$$

Exact Coupling - History

When is successful exact coupling possible? Focus on Markov chain case, $S = S^x$ and $S' = S^y$ started at different states x, y.

- Doeblin 1938: For ergodic chain on finite space, coupling always possible.
- Ornstein 1968: For RW on $\mathbb{Z},$ coupling works with aperiodic step-lengths on $\mathbb{Z}.$
- Berbee 1979: For RW on R, coupling is possible if n-step lengths have Lebesgue part for some n ≥ 1.
- Arnaldsson 2010: For RW on ℝ with countable set A of possible jump sizes, coupling is possible iff x y ∈ ⟨A A⟩.
- Thorisson 2011: Thorisson asked for someone to fill in the gap between last two cases.

Exact Coupling - Setup

Let G be an Abelian Polish group.

Definition (Thorisson [3], 2000.)

For each $x \in G$, let $RW(x, \mu)$ be the law of a random walk on G started at x and with **step-length distribution** μ .

That is, $RW(x, \mu)$ is the law of a process $(S_n^{\times})_{n=0}^{\infty}$ with

$$S_n^x = x + X_1 + X_2 + \dots + X_n, \qquad 0 \leq n < \infty,$$

where $(X_i)_{i=1}^{\infty}$ are i.i.d. random elements in G with distribution μ .

Exact Coupling - Setup

Definition (M [8], 2017.)

Let the successful exact coupling set G_s be the set of $x \in G$ such that there exists a successful exact coupling of $RW(0, \mu)$ and $RW(x, \mu)$.

Exact Coupling - Results

Theorem (M [8], 2017.)

The successful exact coupling set is given by

$$G_{\mathsf{s}} = \{ x \in G : \exists n \ge 1, \mu^n \land \mu^n(x + \cdot) \neq \mathbf{0} \}.$$

Moreover, for $x \in G_s$, $S \sim \mathsf{RW}(0,\mu), S^x \sim \mathsf{RW}(x,\mu)$, one has

$$\| \mathbf{P}(S_n \in \cdot) - \mathbf{P}(S_n^{ imes} \in \cdot) \|_{\mathsf{TV}} \in egin{cases} O(1/\sqrt{n}) & ext{ord}(x) = \infty \ O(
ho^n),
ho \in (0,1) & ext{ord}(x) < \infty. \end{cases}$$

The following notation is used for any measures ν , ν_1 , ν_2 :

- $(\nu_1 \wedge \nu_2)(B) := \sup \{\lambda(B) : \lambda \text{ is a measure, } \lambda \leqslant \nu_1, \nu_2\}.$
- νⁿ := n-fold convolution of ν with itself, i.e., the law of an i.i.d. sum of n ν-distributed RVs.

•
$$\nu(x+\cdot) := \text{shift of } \nu \text{ by } -x.$$

Exact Coupling - Demo

In this portion, one deals with a discrete time Markov chain.

Imagine starting a copy of the Markov chain from every possible state at every possible time such that when two paths meet, they merge.

Doeblin Trees - Definition

Definition (BHM [9], 2018.)

A Doeblin graph is a random graph determined by a source of randomness $(\xi_t)_{t \in \mathbb{Z}}$ and a pathwise transition generator *h*.

Doeblin Trees - Definition

Definition (BHM [9], 2018.)

A **Doeblin graph** is a random graph determined by a **source of** randomness $(\xi_t)_{t \in \mathbb{Z}}$ and a **pathwise transition generator** *h*. These objects must satisfy:

- $(\xi_t)_{t \in \mathbb{Z}}$ is i.i.d. defined on a probability space $(\Omega, \mathcal{F}, \mathbf{P})$ and takes values in some measurable space Ξ , and
- $h: S \times \Xi \rightarrow S$, where S is a countable set.

Doeblin Trees - Definition

Definition (BHM [9], 2018.)

A **Doeblin graph** is a random graph determined by a **source of** randomness $(\xi_t)_{t \in \mathbb{Z}}$ and a **pathwise transition generator** *h*. These objects must satisfy:

- $(\xi_t)_{t\in\mathbb{Z}}$ is i.i.d. defined on a probability space $(\Omega, \mathcal{F}, \mathbf{P})$ and takes values in some measurable space Ξ , and
- $h: S \times \Xi \rightarrow S$, where S is a countable set.

The Doeblin graph **G** determined by $(\xi_t)_{t \in \mathbb{Z}}$ and *h* is defined to have vertices $V(\mathbf{G}) := \mathbb{Z} \times S$ and edges determined by

$$(t,x)\mapsto (t+1,h(x,\xi_t)), \qquad t\in\mathbb{Z}, x\in S.$$

Time, ℤ

Doeblin Trees

A Doeblin graph \mathbf{G} induces a transition matrix P defined by

$$P(x,y) := \mathbf{P}(h(x,\xi_0) = y), \qquad x,y \in S.$$

One may choose $h, (\xi_t)_{t \in \mathbb{Z}}$ so P is any desired transition matrix.

Doeblin Trees - History

This thesis defines a "Doeblin graph", but such graphs have been implicitly studied in the past.

- Borovkov & Foss, 1992: Introduced the mathematical framework of stochastically recursive sequences.
- Propp & Wilson, 1996: Introduced a perfect sampling algorithm called Coupling From The Past (CFTP) to obtain a perfect sample from the stationary distribution of MC.
- Foss & Tweedie, 1998: Determined when CFTP succeeds using vertical coupling times.
- 20+ papers 1996-present: study, improve, or apply CFTP algorithm to specific MC.

Doeblin Trees - Key Ideas

This thesis studies the Doeblin graph itself, instead of the CFTP algorithm. It focuses on:

- Infinite state space case, where one doesn't already know how to do perfect sampling,
- Bridge sub-graph and unimodularity,
- Bi-recurrence.

For the rest of the talk, **G** is a Doeblin graph determined by $(\xi_t)_{t\in\mathbb{Z}}$ and $h: S \times \Xi \to S$, and the induced transition matrix P is assumed to be irreducible, aperiodic, and positive recurrent.

Doeblin Trees - Bridge Graph

Definition (BHM [9], 2018.)

Fix $x \in S$. The **bridge graph** B(x) for state x is the subgraph of **G** induced by all paths started in state x.

Doeblin Trees - Bridge Graph

For the remainder of the talk, **B** denotes a bridge graph $\mathbf{B}(x^*)$ for some fixed $x^* \in S$.

Theorem (BHM [9], 2018.)

Suppose **B** is a tree. Then **B** is unimodularizable. That is, there exists a unimodular random rooted network $[\Gamma, o]$ such that

$$[\mathbf{\Gamma}] \stackrel{d}{=} [\mathbf{B}].$$

Doeblin Trees - Structure of Bridge Graph

Since **B** is unimodularizable, classification theorem tells us that **B** must have a unique bi-infinite path in it (I/F type). **B** can then be thought of as a bi-infinite path $(t, \beta_t)_{t \in \mathbb{Z}}$ with a finite tree Q_t hanging from (t, β_t) for each t.

Doeblin Trees - Bi-recurrence

Definition (BHM [9], 2018.)

A sequence $(x_t)_{t\in\mathbb{Z}}$ in S is called **bi-recurrent** if $\{t\in\mathbb{Z}: x_t=x\}$ is unbounded above and below for all $x\in S$.

Theorem (BHM [9], 2018.)

Suppose **G** is a tree. Then a.s. there exists a unique path $(t, \beta_t)_{t \in \mathbb{Z}}$ in **G** such that $(\beta_t)_{t \in \mathbb{Z}}$ is bi-recurrent. Moreover, $(\beta_t)_{t \in \mathbb{Z}}$ is a stationary MC with transition matrix P.

Here is where using a countably infinite state space is fruitful. If the state space is finite, the bi-recurrent path is the only bi-infinite path.

Time, ℤ

Doeblin Trees - Another Example

Doeblin Trees - Application to MC

By embedding Markov chains inside Doeblin trees, one obtains the following.

Theorem (BHM [9], 2018.)

Suppose that $(X_t)_{t\in\mathbb{Z}}$ is a MC on a countable state space with irreducible, aperiodic, and positive recurrent transition matrix. Then $(X_t)_{t\in\mathbb{Z}}$ is stationary if and only if it is a.s. bi-recurrent.

Doeblin Trees - Conservation Laws

Recall $\mathbf{B} = \mathbf{B}(x^*)$ for a fixed state $x^* \in S$.

Proposition (BHM [9], 2018.)

Each of the following has the same mean:

- $\# \{(t, x) \in V(\mathbf{B}) : t = 0\}.$
- $\# \{(t,x) \in V(\mathbf{B}) : (t,x) \text{ first returns to } x^* \text{ at time } 0\}.$
- $\#Q_0$ (assuming **B** is a tree).

Moreover, this mean is at most $1/\pi(x^*)$, where π is the stationary distribution corresponding to *P*.

In the above, each bullet represents a different partition of ${f B}$:

- Vertices partitioned by their relative time (vertical slice).
- Vertices partitioned by their return times to x^* .
- Vertices partitioned by their merge times with bi-recurrent path.

Result obtained by mass-transports. E.g. send mass from each vertex in a vertical slice to the first time it returns to state x^* .

Doeblin Trees - Final Demo

Thank you

Questions?

References - Exact Coupling

- [1] Arnaldsson, Ö.: On coupling of discrete random walks on the line (2010).
- [2] Berbee, H.C.: Random walks with stationary increments and renewal theory (1979).
 MC Tracts 112, 1–223.
- [3] Thorisson, H.: Coupling, stationarity, and regeneration, vol. 200. (2000).
 Springer New York.
- [4] Thorisson, H.: Open problems in renewal, coupling and palm theory (2011).
 Queueing Systems 68(3-4), 313–319.

References - Doeblin Trees

- [5] Propp, J. and Wilson D.: Exact sampling with coupled Markov chains and applications to statistical mechanics (1996).
 Random Structures & Algorithms 9(1-2), 223-252.
- [6] Borovkov, A. and Foss, S.: Stochastically recursive sequences and their generalizations (1992).
 Siberian Advances in Mathematics 2(1), 16–81.

 [7] Foss, S. and Tweedie R.: Perfect simulation and backwards coupling (1998).
 Comm. Statist. Stochastic Models 14(1-2), 187–203.

References

- [8] Murphy, J.: Exact Coupling of Random Walks on Polish Groups (2017).
 Journal of Theoretical Probability.
- [9] Baccelli, F., Haji-Mirsadeghi, M.-O., and Murphy, J.: Doeblin Trees (2018).
 Submitted. arXiv preprint.
- [10] Murphy, J.: Point-shifts of Point Processes on Topological Groups (2018).
 Submitted. arXiv preprint.

Future Work

(i) Exact Coupling of Random Walks

- Are TV bounds within a multiplicative constant of optimal? What is the optimal exact coupling?
- Can results be extended to continuous time?
- What is the Hausdorff dimension of G_s ?

(ii) Doeblin Trees

- Is there an algorithm to compute β_0 when S is infinite?
- Unimodularity came from the stationarity of (ξ_t)_{t∈Z}, can the construction be generalized to other structures joined in a stationary manner?
- What changes in the null-recurrent and transient cases?
- (iii) Point-shifts of Point Processes on Groups
 - Can all stationary point processes on unimodular groups be seen as embeddings of unimodular networks?
 - When can a unimodular network be embedded as a stationary point process?