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Outline

This thesis is primarily comprised of 3 papers about:

(i) Exact Coupling of Random Walks,

(ii) Doeblin Trees,

(iii) Point-shifts of Point Processes on Groups.

This talk will cover the first two.
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Exact Coupling

Definition (Thorisson [3], 2000.)

A successful exact coupling is a triple ((Sn)n, (S
′
n)n,T ) of two

processes and an a.s. finite random time such that

Sn = S ′n, n > T .

Why do this? If there is a successful exact coupling, then∥∥P(Sn ∈ ·)− P(S ′n ∈ ·)
∥∥
TV
→ 0, n→∞.
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Exact Coupling - History

When is successful exact coupling possible?
Focus on Markov chain case, S = Sx and S ′ = Sy started at
different states x , y .

• Doeblin 1938: For ergodic chain on finite space, coupling
always possible.

• Ornstein 1968: For RW on Z, coupling works with aperiodic
step-lengths on Z.

• Berbee 1979: For RW on R, coupling is possible if n-step
lengths have Lebesgue part for some n > 1.

• Arnaldsson 2010: For RW on R with countable set A of
possible jump sizes, coupling is possible iff x − y ∈ 〈A− A〉.
• Thorisson 2011: Thorisson asked for someone to fill in the gap

between last two cases.
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Exact Coupling - Setup

Let G be an Abelian Polish group.

Definition (Thorisson [3], 2000.)

For each x ∈ G , let RW(x , µ) be the law of a random walk on G
started at x and with step-length distribution µ.

That is, RW(x , µ) is the law of a process (Sx
n )∞n=0 with

Sx
n = x + X1 + X2 + · · ·+ Xn, 0 6 n <∞,

where (Xi )
∞
i=1 are i.i.d. random elements in G with distribution µ.
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Exact Coupling - Setup

Definition (M [8], 2017.)

Let the successful exact coupling set Gs be the set of x ∈ G
such that there exists a successful exact coupling of RW(0, µ) and
RW(x , µ).
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Exact Coupling - Results

Theorem (M [8], 2017.)

The successful exact coupling set is given by

Gs = {x ∈ G : ∃n > 1, µn ∧ µn(x + ·) 6= 0} .

Moreover, for x ∈ Gs , S ∼ RW(0, µ),Sx ∼ RW(x , µ), one has

‖P(Sn ∈ ·)− P(Sx
n ∈ ·)‖TV ∈

{
O(1/

√
n) ord(x) =∞

O(ρn), ρ ∈ (0, 1) ord(x) <∞.

The following notation is used for any measures ν, ν1, ν2:

• (ν1 ∧ ν2)(B) := sup {λ(B) : λ is a measure, λ 6 ν1, ν2}.
• νn := n-fold convolution of ν with itself, i.e., the law of an i.i.d. sum of n
ν-distributed RVs.

• ν(x + ·) := shift of ν by −x .
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Exact Coupling - Demo
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Doeblin Trees

In this portion, one deals with a discrete time Markov chain.

Imagine starting a copy of the Markov chain from every possible
state at every possible time such that when two paths meet, they
merge.
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Doeblin Trees - Definition

Definition (BHM [9], 2018.)

A Doeblin graph is a random graph determined by a source of
randomness (ξt)t∈Z and a pathwise transition generator h.

These objects must satisfy:

• (ξt)t∈Z is i.i.d. defined on a probability space (Ω,F ,P) and
takes values in some measurable space Ξ, and

• h : S × Ξ→ S , where S is a countable set.

The Doeblin graph G determined by (ξt)t∈Z and h is defined to
have vertices V (G) := Z× S and edges determined by

(t, x) 7→ (t + 1, h(x , ξt)), t ∈ Z, x ∈ S .
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Doeblin Trees - Example
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Doeblin Trees - Example
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Doeblin Trees
A Doeblin graph G induces a transition matrix P defined by

P(x , y) := P(h(x , ξ0) = y), x , y ∈ S .

One may choose h, (ξt)t∈Z so P is any desired transition matrix.

Time, 

St
at

e,
 S

(t, x)

Path of a MC started in an initial state x at time t
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Doeblin Trees - History

This thesis defines a “Doeblin graph”, but such graphs have been
implicitly studied in the past.

• Borovkov & Foss, 1992: Introduced the mathematical
framework of stochastically recursive sequences.

• Propp & Wilson, 1996: Introduced a perfect sampling
algorithm called Coupling From The Past (CFTP) to obtain a
perfect sample from the stationary distribution of MC.

• Foss & Tweedie, 1998: Determined when CFTP succeeds
using vertical coupling times.

• 20+ papers 1996–present: study, improve, or apply CFTP
algorithm to specific MC.
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Doeblin Trees - Key Ideas

This thesis studies the Doeblin graph itself, instead of the CFTP
algorithm. It focuses on:

• Infinite state space case, where one doesn’t already know how
to do perfect sampling,

• Bridge sub-graph and unimodularity,

• Bi-recurrence.

For the rest of the talk, G is a Doeblin graph determined by
(ξt)t∈Z and h : S × Ξ→ S , and the induced transition matrix P is
assumed to be irreducible, aperiodic, and positive recurrent.
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Doeblin Trees - Bridge Graph

Definition (BHM [9], 2018.)

Fix x ∈ S . The bridge graph B(x) for state x is the subgraph of
G induced by all paths started in state x .
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Doeblin Trees - Bridge Graph

For the remainder of the talk, B denotes a bridge graph B(x∗) for
some fixed x∗ ∈ S .

Theorem (BHM [9], 2018.)

Suppose B is a tree. Then B is unimodularizable. That is, there
exists a unimodular random rooted network [Γ, o] such that

[Γ]
d
= [B].
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Doeblin Trees - Structure of Bridge Graph
Since B is unimodularizable, classification theorem tells us that B
must have a unique bi-infinite path in it (I/F type). B can then be
thought of as a bi-infinite path (t, βt)t∈Z with a finite tree Qt

hanging from (t, βt) for each t.
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Doeblin Trees - Bi-recurrence

Definition (BHM [9], 2018.)

A sequence (xt)t∈Z in S is called bi-recurrent if {t ∈ Z : xt = x}
is unbounded above and below for all x ∈ S .

Theorem (BHM [9], 2018.)

Suppose G is a tree. Then a.s. there exists a unique path
(t, βt)t∈Z in G such that (βt)t∈Z is bi-recurrent. Moreover,
(βt)t∈Z is a stationary MC with transition matrix P.

Here is where using a countably infinite state space is fruitful. If
the state space is finite, the bi-recurrent path is the only bi-infinite
path.
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Doeblin Trees - Example
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Doeblin Trees - Another Example
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Doeblin Trees - Application to MC

By embedding Markov chains inside Doeblin trees, one obtains the
following.

Theorem (BHM [9], 2018.)

Suppose that (Xt)t∈Z is a MC on a countable state space with
irreducible, aperiodic, and positive recurrent transition matrix.
Then (Xt)t∈Z is stationary if and only if it is a.s. bi-recurrent.
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Doeblin Trees - Conservation Laws

Recall B = B(x∗) for a fixed state x∗ ∈ S .

Proposition (BHM [9], 2018.)

Each of the following has the same mean:

• # {(t, x) ∈ V (B) : t = 0}.
• # {(t, x) ∈ V (B) : (t, x) first returns to x∗ at time 0}.
• #Q0 (assuming B is a tree).

Moreover, this mean is at most 1/π(x∗), where π is the stationary
distribution corresponding to P.

In the above, each bullet represents a different partition of B:

• Vertices partitioned by their relative time (vertical slice).

• Vertices partitioned by their return times to x∗.

• Vertices partitioned by their merge times with bi-recurrent path.

Result obtained by mass-transports. E.g. send mass from each vertex in a
vertical slice to the first time it returns to state x∗.
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Doeblin Trees - Final Demo
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Thank you

Questions?
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Future Work

(i) Exact Coupling of Random Walks

• Are TV bounds within a multiplicative constant of
optimal? What is the optimal exact coupling?
• Can results be extended to continuous time?
• What is the Hausdorff dimension of Gs?

(ii) Doeblin Trees

• Is there an algorithm to compute β0 when S is infinite?
• Unimodularity came from the stationarity of (ξt)t∈Z, can

the construction be generalized to other structures joined
in a stationary manner?
• What changes in the null-recurrent and transient cases?

(iii) Point-shifts of Point Processes on Groups

• Can all stationary point processes on unimodular groups
be seen as embeddings of unimodular networks?
• When can a unimodular network be embedded as a

stationary point process?
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