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Outline

This thesis is primarily comprised of 3 papers about:

(i) Exact Coupling of Random Walks,
(ii) Doeblin Trees,

(iii) Point-shifts of Point Processes on Groups.

This talk will cover the first two.

2/30



Exact Coupling

Definition (Thorisson [3], 2000.)

A successful exact coupling is a triple ((S,),.(S}),, T) of two
processes and an a.s. finite random time such that

S, =S, n>T.

Why do this? If there is a successful exact coupling, then

P(S,e-)—P(S,e) — 0, n— oo.
TV
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Exact Coupling - History

When is successful exact coupling possible?
Focus on Markov chain case, S = S* and S’ = SY started at
different states x, y.

Doeblin 1938: For ergodic chain on finite space, coupling
always possible.

Ornstein 1968: For RW on Z, coupling works with aperiodic
step-lengths on Z.

Berbee 1979: For RW on R, coupling is possible if n-step
lengths have Lebesgue part for some n > 1.

Arnaldsson 2010: For RW on R with countable set A of
possible jump sizes, coupling is possible iff x —y € (A — A).

Thorisson 2011: Thorisson asked for someone to fill in the gap
between last two cases.
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Exact Coupling - Setup

Let G be an Abelian Polish group.

Definition (Thorisson [3], 2000.)

For each x € G, let RW(x, i) be the law of a random walk on G
started at x and with step-length distribution .

That is, RW(x, 11) is the law of a process (55)%2, with
Si=x+Xi+Xo+ -+ X, 0<n<oo,

where (X;)72; are i.i.d. random elements in G with distribution p.
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Exact Coupling - Setup

Definition (M [8], 2017.)

Let the successful exact coupling set G be the set of x € G
such that there exists a successful exact coupling of RW(0, 1) and
RW(x, ).
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Exact Coupling - Results

Theorem (M [8], 2017.)

The successful exact coupling set is given by
Gs={xeG:aIn=>1u"Ap"(x+-)#0}.

Moreover, for x € Gs, S ~ RW(0, i), S* ~ RW(x, 1), one has

O(1/+/n) ord(x) = o0

”P(Sn S ) — P(S,); (S ')HTV € {O(pn)’p c (07 ]_) ord(x) < 0.

The following notation is used for any measures v, v1, vs:
o (11 An)(B) :=sup{A(B): \is a measure, A < v1,1»}.

e " := n-fold convolution of v with itself, i.e., the law of an i.i.d. sum of n
v-distributed RVs.

e y(x + ) := shift of v by —x.
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Exact Coupling - Demo
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Doeblin Trees

In this portion, one deals with a discrete time Markov chain.
Imagine starting a copy of the Markov chain from every possible

state at every possible time such that when two paths meet, they
merge.
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Doeblin Trees - Definition

Definition (BHM [9], 2018.)

A Doeblin graph is a random graph determined by a source of
randomness ({;),., and a pathwise transition generator h.
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Doeblin Trees - Definition

Definition (BHM [9], 2018.)

A Doeblin graph is a random graph determined by a source of
randomness ({;),., and a pathwise transition generator h.
These objects must satisfy:
® (&t)icy is iid. defined on a probability space (€2, F,P) and
takes values in some measurable space =, and

e h:Sx=—=S5, where S is a countable set.
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Doeblin Trees - Definition

Definition (BHM [9], 2018.)

A Doeblin graph is a random graph determined by a source of
randomness ({;),., and a pathwise transition generator h.
These objects must satisfy:
® (&t)icy is iid. defined on a probability space (€2, F,P) and
takes values in some measurable space =, and
e h:Sx=—S, where S is a countable set.

The Doeblin graph G determined by (&:),.; and h is defined to
have vertices V(G) := Z x S and edges determined by

(t,x) = (t+ 1, h(x, &), teZ,xeS.
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Doeblin Trees - Example
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Doeblin Trees
A Doeblin graph G induces a transition matrix P defined by
P(x,y) =P(h(x,&) =y),  x,y€S.

One may choose h, (&t),c7 so P is any desired transition matrix.

—e— Path of a MC started in an initial state x at time t

AV
IS

NN

State, S

Time, 7
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Doeblin Trees - History

This thesis defines a “Doeblin graph”, but such graphs have been
implicitly studied in the past.

e Borovkov & Foss, 1992: Introduced the mathematical
framework of stochastically recursive sequences.

e Propp & Wilson, 1996: Introduced a perfect sampling
algorithm called Coupling From The Past (CFTP) to obtain a
perfect sample from the stationary distribution of MC.

o Foss & Tweedie, 1998: Determined when CFTP succeeds
using vertical coupling times.

e 20+ papers 1996—present: study, improve, or apply CFTP
algorithm to specific MC.
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Doeblin Trees - Key |deas

This thesis studies the Doeblin graph itself, instead of the CFTP
algorithm. It focuses on:

e Infinite state space case, where one doesn't already know how
to do perfect sampling,

e Bridge sub-graph and unimodularity,

e Bi-recurrence.

For the rest of the talk, G is a Doeblin graph determined by
(&t)¢ez and h: S x = —= S, and the induced transition matrix P is
assumed to be irreducible, aperiodic, and positive recurrent.
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Doeblin Trees - Bridge Graph
Definition (BHM [9], 2018.)

Fix x € S. The bridge graph B(x) for state x is the subgraph of
G induced by all paths started in state x.

+ —e= Bridge graph -
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Doeblin Trees - Bridge Graph

For the remainder of the talk, B denotes a bridge graph B(x*) for
some fixed x* € §.

Theorem (BHM [9], 2018.)

Suppose B is a tree. Then B is unimodularizable. That is, there
exists a unimodular random rooted network [T, o] such that

WES:)
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Doeblin Trees - Structure of Bridge Graph
Since B is unimodularizable, classification theorem tells us that B
must have a unique bi-infinite path in it (I/F type). B can then be

thought of as a bi-infinite path (t, 3¢),c, with a finite tree Q;
hanging from (t, 3;) for each t.
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Doeblin Trees - Bi-recurrence

Definition (BHM [9], 2018.)

A sequence (xt),cz in S is called bi-recurrent if {t € Z : x; = x}
is unbounded above and below for all x € S.

Theorem (BHM [9], 2018.)

Suppose G is a tree. Then a.s. there exists a unique path
(t,Bt)rez in G such that (Bt),cq is bi-recurrent. Moreover,
(Bt)ez fs a stationary MC with transition matrix P.

Here is where using a countably infinite state space is fruitful. If
the state space is finite, the bi-recurrent path is the only bi-infinite
path.
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Doeblin Trees - Example
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Doeblin Trees - Another Example
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Doeblin Trees - Application to MC

By embedding Markov chains inside Doeblin trees, one obtains the
following.

Theorem (BHM [9], 2018.)

Suppose that (Xt),cy is a MC on a countable state space with
irreducible, aperiodic, and positive recurrent transition matrix.

Then (Xt),cz is stationary if and only if it is a.s. bi-recurrent.
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Doeblin Trees - Conservation Laws

Recall B = B(x*) for a fixed state x* € S.
Proposition (BHM [9], 2018.)

Each of the following has the same mean:
o #{(t,x) e V(B):t=0}.
o #{(t,x) € V(B): (t,x) first returns to x* at time 0}.
o #Qo (assuming B is a tree).

Moreover, this mean is at most 1/7(x*), where 7 is the stationary
distribution corresponding to P.

In the above, each bullet represents a different partition of B:
e Vertices partitioned by their relative time (vertical slice).
e Vertices partitioned by their return times to x*.
e Vertices partitioned by their merge times with bi-recurrent path.

Result obtained by mass-transports. E.g. send mass from each vertex in a
vertical slice to the first time it returns to state x*.
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Doeblin Trees - Final Demo
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Thank you

Questions?
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Future Work

(i) Exact Coupling of Random Walks
e Are TV bounds within a multiplicative constant of
optimal? What is the optimal exact coupling?
e Can results be extended to continuous time?
e What is the Hausdorff dimension of Gs?

(ii) Doeblin Trees
e Is there an algorithm to compute 5y when S is infinite?
e Unimodularity came from the stationarity of (&t),5, can
the construction be generalized to other structures joined
in a stationary manner?
e What changes in the null-recurrent and transient cases?
(iii) Point-shifts of Point Processes on Groups
e Can all stationary point processes on unimodular groups
be seen as embeddings of unimodular networks?
e When can a unimodular network be embedded as a
stationary point process?
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