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Abstract

This paper is centered on the random graph generated by a Doeblin-
type coupling of discrete time processes on a countable state space whereby
when two paths meet, they merge. This random graph is studied through
a novel subgraph, called a bridge graph, generated by paths started in
a fixed state at any time. The bridge graph is made into a unimodular
network by marking it and selecting a root in a specified fashion. The
unimodularity of this network is leveraged to discern global properties of
the larger Doeblin graph. Bi-recurrence, i.e., recurrence both forwards
and backwards in time, is introduced and shown to be a key property in
uniquely distinguishing paths in the Doeblin graph, and also a decisive
property for Markov chains indexed by Z. Properties related to simulating
the bridge graph are also studied.
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1. Introduction

The first incarnation of the Propp and Wilson [24] coupling from the past
(CFTP) algorithm was designed to build a perfect sample from the station-
ary distribution 7 of an irreducible, aperiodic, and positive recurrent Markov
chain on a finite state space S. It uses a Doeblin-type coupling of a family of
copies of the Markov chain started in all possible states at all possible times,
whereby when two chains meet, they merge. This coupling is represented with
a random directed graph on Z x S depicting the trajectories of these Markov
chains. Below, this random graph will be referred to as the Doeblin graph of
the chain.

Prior to this research, the study of this random graph has been mostly
a by-product of research on perfect simulation. In 1992-1993, Borovkov and
Foss [6, 4] laid out the framework of stochastically recursive sequences (SRS),
of which Markov chains are a special case, and they proved the main results on
the existence of a stationary version of an SRS to which non-stationary versions
converge in a certain sense. The CFTP algorithm itself was introduced by Propp
and Wilson in 1996 in [24] for obtaining samples from the stationary distribution
of a Markov chain. The CFTP algorithm can be seen as a specialization of the
general ideas of [6] for SRS to the Markov case aiming at perfect simulation. Foss
and Tweedie [10] then gave a necessary and sufficient condition for the CFTP
algorithm to converge a.s. From 1996 to 2000, many papers [8, 23, 22, 25, 13, 11,
12, 20, 15, 26, 18] investigated how to improve CFTP implementations or how
to apply CFTP or a CFTP-inspired algorithm to obtain a perfect sample from



a particular Markov chain’s stationary distribution. Of particular importance
is Wilson’s read-once CFTP algorithm [26], which allows CFTP to be done by
only simulating forwards in time. A review of perfect simulation in stochastic
geometry up to that point is provided in [21]. Since then, [14, 7] showed that
(possibly impractical) generalizations of the CFTP algorithm can be applied
under weaker conditions, and [9] gives a CFTP-like algorithm that applies even
in the non-Markovian setting.

In this paper, focus is shifted away from finding an individual sample from
the stationary distribution of a Markov chain, and instead properties of the
Doeblin graph as a whole are studied. The SRS framework will be used, but,
because the Markov case is a fundamental special case, most sections will spell
out what can be said in the Markov case. The main tool of study is the theory
of unimodular random (rooted) networks in the sense of Aldous and Lyons [1].
Unimodular networks are rooted networks where, heuristically, the root is picked
uniformly at random. In order to generalize this concept for infinite networks,
instead of picking the root uniformly at random, the network is required to
satisfy a mass transport principle. The primary new object of study is the
subgraph of bridges between a fixed recurrent state, which is referred to as the
bridge graph and is roughly inspired by the population process in [3]. The
subgraph is defined by looking at processes started at any time from this fixed
state. General setup and definitions of the Doeblin graph and the bridge graph
are given in Section 2. Random networks and how to view subgraphs like the
bridge graph as random networks are handled in Section 3. The main theorem
is then proved in Section 4.

Section 4.1 proves the main theorem, identifying the unimodular structure
in the bridge graph. Section 4.2 studies properties of the bridge graph that are
inherited due to its I/F component structure as a unimodular network. Here I/F
refers to the class of a component in the sense of the foil classification theorem
in unimodular networks in [2], which is reviewed in Section 3. The most inter-
esting case is when S is infinite and the Doeblin graph is connected. In this case
(see Corollary 4.7), although there may be infinitely many bi-infinite paths in
the Doeblin graph, there exists a unique bi-recurrent path, a bi-infinite path
that visits every state infinitely often in the past, as well as in the future. This
unique path also has the property that the states in S that the path traverses
form a stationary version of the original Markov chain (or SRS), and hence give
samples from its stationary distribution. Indeed, the original CFTP algorithm
ultimately computes the time zero point on the bi-recurrent path. By embed-
ding Markov chains inside Doeblin graphs, bi-recurrence is also shown to be a
decisive property for Markov chains indexed by Z. Theorem 4.10 shows that
if a Markov chain (X}),., has an irreducible, aperiodic, and positive recurrent
transition matrix, then (X;),, is stationary if and only if it is bi-recurrent for
any (and hence every) state. The I/F structure of a component leads to further
useful qualitative properties discussed in Section 4.2.2. In reversed time, the
bridge tree can be seen as a multi-type branching-like process where the types
are the elements of S, and for which there is at most one child of each type per
generation. The nodes in this branching process are either mortal (i.e., with



finitely many descendants) or immortal (resp. infinitely many). The mortal de-
scendants of the nodes on the bi-infinite path form a stationary sequence of finite
trees. Mean values in these trees are linked to coupling times by mass-transport
relations. Finally, Section 4.3 gives results that are relevant to simulating the
bridge graph, such as approximating the bridge graph by finite networks, and
viewing the process of vertical slices of the bridge graph as a Markov chain in
its own right. The final section gives several bibliographical comments, which
make connections of the present research to other works.

2. The Doeblin Graph

2.1. Definition

In this section, the Doeblin graph is constructed. Fix a probability space
(Q, F,P), a countable state space S, and a complete separable metric space
= for the remainder of the document. The first ingredient needed is a path-
wise transition generator, a function hgen : S X Z — S that will be used
for determining transitions between states of S. Such an hgen, combined with
a driving sequence (&;),cy, is used to give a pathwise representation of a
stochastic process (X¢),.y satisfying

Xt+1 = hgen(Xtygt)v t 2 0 (1)

Equation (1) is the defining property of a stochastically recursive sequence (SRS)
in the sense of Borovkov and Foss [6]. If the driving sequence is taken to be i.i.d.
and independent of Xo, then (X;),.y is a (discrete time) Markov chain with
transition matrix P = (pzy), e determined by psy := P(hgen(z,&0) = ¥)
for each z,y € S. It is a classical result that, when = := [0, 1], all possible
transition matrices P can be achieved by choosing hge, and the distribution of &g
accordingly (c.f. Chapter 17 in [5]). Many processes in this paper will be indexed
by Z or an interval of Z instead of just N. The pathwise transition generator
hgen and a stationary and ergodic bi-infinite driving sequence § := (&), are
fixed for the remainder of the document. The notation for the transition matrix
P= (p$y)zy cg is also fixed for the remainder of the document, even when ¢ is
not assumed to be i.i.d.

The space Z x S should be thought of as time and space coordinates, with
(t,x) € Z x S being in state = at time ¢. The vertices and edges of a graph T’
will be written V(I') and E(T'), and if V(I") C Z x S, the vertices of T sitting

at a particular time ¢ or in a particular state  will be denoted, respectively, as
Vi) :={(s,y) e V([):s=t}, VD) :={(s,y) eV(D):y=2}. (2)

Note that V;(T') and V*(T') are subsets Z x S, i.e. their elements have both a
time component and a space component. If instead just states (elements of S)
or just times (elements of Z) are desired, then the following are used instead

I'yi={zxesS:(t,x) eV;(I)}, TT:={teZ: (t,x) e V*(I)}. (3)



Then the Doeblin graph G = G(hgen, ) is constructed as follows. It has
vertices V(G) := Z x S. The edges of G are determined by the follow map
f+ : V(G) = V(G), which is a random map giving directions of where each
vertex should move to in the next time step. It is defined by

f+(t,x) = (t + 1, hgen(x,&)), (t,x) €Z x S. (4)

That is, let the edges of G be drawn from each (t,x) € Z x S to f+(¢t,z). By
saying a function f : A — B is a random map, it is meant that f : AxQ — B is
measurable and the second argument will be omitted. Iterates of f are denoted
by fI for n > 0. Thinking of each vertex in G as an individual, one may also
interpret the follow map as mapping each vertex to its parent vertex.

2.2. Modeling

When dealing with paths in G, it will often be convenient to ignore the time
coordinate and focus only on the space coordinate. If (X;),.; is a stochastic
process defined on € which takes values in S and is such that (¢, X;),.; is a.s. a
path in G over some fixed time interval I C Z, then (X;),.; is called the state
path (in G) corresponding to the path (¢, X;),.;. That is, there are two ways
of looking at every route through G: as a path (¢, X;),.; C V(G), or as a state

path (X¢),.; € S.

tel

Lemma 2.1. Let I # () be an interval in Z. Suppose that (X),.; is a stochas-
tic process taking values in S a.s. satisfying the recurrence relation Xypq1 =
hgen(Xt, &) for each inf I <t < supl, where hgen and (§),o; are the same as
are used to define G. Then (X¢),c; is a state path in G.

Proof. One must check that (t,X;),.; is a.s. a path in G. Fix t € I. Since
V(G)=2Z xS, (t,X;) is certainly a vertex of G. If t + 1 € I as well, one must
check the edge e from (¢, X;) to (¢t + 1, X;41) is a.s. an edge in G. The edges of
G are defined to be from each (t,z) € Z xS to (t+1, hgen(,&)), so the relation
X1 = hgen (X4, &) holding a.s. implies the edge e is a.s. an edge of G. O

In particular, Lemma 2.1 says that any SRS whose driving sequence is de-
fined for all times in Z can be seen as living inside a Doeblin graph, namely the
one generated by its driving sequence and choosing hgen to be the same as in
the definition of the SRS.

State paths started at a deterministic vertex will also be used heavily. For
the remainder of the document, let F(:%) .= (Fs(t’w))SZt be the state path in G
started at time ¢ in state z, i.e., F(%) is a re-indexing of the states traversed
by fi defined by

(s, F{t2)) = Tt ), (t,x) €Z xS, s>t (5)

One has that F®?) is a version of the SRS or Markov chain started in state
2 with initial condition given at time t. Generally speaking, throughout the
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Figure 1: An example of a Doeblin graph with the path corresponding to the
state path F(t) distinguished. All edges are directed from left to right.

paper, a parenthesized superscript, as in F(®%) refers to a starting location.
For every x € S, the distribution of (F s(j_f)) <o does not depend on ¢ because

€ is stationary. An example of a Doeblin graph and path of F**) are drawn
in Figure 1.

It has already been noted (see [5]) that a Markov chain (X;),.y with any
given desired transition matrix can be constructed as an SRS with i.i.d. driving
sequence. The following is an analogous result saying that any Markov chain
(Xt),cz may be realized as a state path in a Doeblin graph with i.i.d. driving
sequence. Note here that the time index set is all of Z, not just N.

Theorem 2.2. Suppose that (Xt),., is a Markov chain with transition matriz
P on some probability space, where P is the same as was defined for the Doeblin
graph G. Also suppose the driving sequence £ is i.i.d. Then there is a probability
space (', F',P') and (X{),cq ~ (Xt)seq, on Q' such that (X{),., is state path
in G, where G’ is the Doeblin graph generated by some i.1.d. driving sequence
& = (§)ey ~ & in Q' with pathwise transition generator hgen. Moreover, for
each t € Z, X{ is independent of (&),

Proof (sketch). Consider a probability space housing independent copies of
(Xt);ez and G. Then consider for each ¢ € Z the state path in G started at
X;. The distributions of these state paths determine a consistent set of finite
dimensional distributions for the desired pair of processes ((X{),cz, (&f);cz)- By
the Kolmogorov extension theorem, the result follows. The full proof of Theo-
rem 2.2 is given in the appendix.



2.3. Basic Properties

Plainly, G is acyclic as an undirected graph because all outgoing edges point
forward one unit in time and each vertex has only one outgoing edge. When G
is a.s. connected, it is called a Doeblin Eternal Family Tree or a Doeblin
EFT for short. More generally, G may have up to countably many components
and is referred to as a Doeblin Eternal Family Forest or Doeblin EFF.
The EFT and EFF terminology is inspired by [2] and the word eternal refers
to the fact that every vertex of G has a unique outgoing edge. That is, there
is no individual that is an ancestor of all other individuals. An EFF is a more
general object than an EFT, i.e. an EFF may also be an EFT.

If the driving sequence ¢ is i.i.d., so that the state paths F*?) for each
(t,x) € Z x S are Markov chains, then say that G is Markovian. If £ is
such that for each t € Z, (fy(t,7)),cg is an independent family, then G is
said to have vertical independence. If G is Markovian and has vertical
independence, then say that G has fully independent transitions.

Some later results are only valid for EFTs, so the following result gives an
easy case when G can be shown to be connected.

Proposition 2.3. Suppose G has fully independent transitions, and P is irre-
ducible and positive recurrent with period d. Then a.s. G has d components. In
particular, if P is irreducible, aperiodic, and positive recurrent, then G is an
EFT.

Proof (sketch). The case of a general d is reduced to d = 1 by viewing the chain
only every d steps and with state space restricted to one of the d classes appear-
ing in a cyclic decomposition of the state space. Consider the state paths in G
started at (0,z) and (0,y) for any two z,y. Strictly before hitting the diagonal,
the pair of state paths has the same distribution as a product chain, i.e. two
independent copies of the chain with one started at x and the other at y. The
product chain is irreducible, aperiodic, and positive recurrent, and therefore a.s.
hits the diagonal, showing the state paths started at (0,z) and (0, y) eventually
merge. The full proof of Proposition 2.3 is given in the appendix.

A &-measurable subgraph I' = T'((&;),c) of G is called shift-covariant if,
forall s € Z, T'((§4s)4¢7) is a.s. the time-translation of I' by —s. Say a state path
(X¢),cz is shift-covariant if the corresponding path in G is shift-covariant. In
other words, if the driving sequence ¢ is translated by some amount s in time,
then shift-covariant objects are also translated in time by the same amount. Let
E € F be {-measurable, say 1p = g((§¢);c). Say that E is shift-invariant
if 9((&t)iez) = 9((&t41)1ez) a-s. That is, shift-invariant events are those events
whose occurence is unaffected by time translations of the driving sequence £.
One has that P(E) € {0, 1} for all shift-invariant events E due to the ergodicity
of £. All of the following are shift-invariant and hence happen with probability
zero or one: G is locally finite, G contains no cycles, G is connected, G has



exactly n € NU {oo} components, G contains exactly n € NU {oo} bi-infinite
paths. Generally it will be obvious whether an event is shift-invariant.

When G is a Markovian, one needs to be cautious that not all state paths
in G are Markov chains with transition matrix P.

Example 2.4. Let S := Z and suppose G has fully independent transitions
with Pyo—1 = Dee = Daat1 = % for all z € S. Choose Xy to be the smallest

element of Z (in some well-ordering of Z) such that FI(O’XO) = FQ(O’XO). In this
case, a.s. X1 = Xy, 50 (X¢),cy is not even Markovian.

The problem with the path in the previous example is that it looks into the
future. Namely, the value of Xy depends on information at time 1 and time 2.
To exclude state paths like those in Example 2.4, the notion of properness is
introduced. For a nonempty interval I of Z, if for each ¢t € I, X, is independent
of (§s) 4>, then (X¢),or is called a proper state path. In the Markovian case, if
I has a minimum element ¢y, then to show that a state path (X;),.; is proper it
is sufficient that Xy, is independent of (&), because for any s € N, Xy ;s is
measurable with respect to the o-algebra generated by X, and &, ..., &+s—1-
Unlike general state paths in G, proper state paths inherit a Markov transition
structure.

Lemma 2.5. Suppose G is Markovian. If (X¢),c; is a proper state path in G
over a nonempty interval I C Z, then (X),.; is a Markov chain with transition
matriz P.

Proof. Fixt <supl. Let E:={X; = x4,...,X¢— = Tt_p } be given with k € N
such that t — k > infI, and xy,...,x;_r € S. Note that whether E occurs is
a function of X;_j and & _g,...,&—1, so the fact that X;_j is independent of
(gs)s>t_k and the fact that £ is i.i.d. imply that E is independent of (&)
Then for any x € S,

s>t”

Ellix, =116l = E[l{n(e, )=z} 1 5]
=P(h(z, &) = 2)P(E)
= po, 2 P(E)
=E[px, .1Eg]

Since F was an arbitrary cylinder set, it follows that for all x € S,
P(Xt+1 = | (Xs)seLsgt) :pthl"

Thus (X;),; is a Markov chain with transition matrix P. O

2.4. Connections with CFTP

Consider the following structural result that will be expanded upon in Sec-
tion 4.2.1. It is a special case of Proposition 4.6 and Corollary 4.7, which will
be proved later.



Proposition 2.6. Suppose G is Markovian, and that P is irreducible, aperiodic,
and positive recurrent. Then a.s. in every component of G there exists a unique
bi-infinite path that visits every state in S infinitely often in the past. All other
bi-infinite paths in G do not visit any state infinitely often in the past. If G
1s an EFT, then with B8; denoting the state at time t of the unique bi-infinite
path visiting every state infinitely often in the past, one has that (B¢),cq is a
stationary Markov chain with transition matrix P, so that By ~ w for all t € Z,
where w is the invariant distribution for P.

The main result of the original Propp and Wilson paper can be translated
into the language of Doeblin EFFs and summarized as follows. The reader is
encouraged to ponder what it says about the structure of G, and in doing so
one sees that is has much the same spirit as Proposition 2.6.

Proposition 2.7 (Perfect Sampling [24]). If S is finite and G is Markovian
and an EFT (which, since S is finite, necessitates that P is irreducible and
aperiodic), then there is an a.s. finite time T such that oll paths in G started at
any time t < —7 have merged by time 0, all reaching a common vertez (0, By).
Moreover, By ~ w, where 7 is the stationary distribution of P, and there is an
algorithm A that a.s. terminates in finite time returning g.

Remark 2.8. In fact, the 8y appearing in Proposition 2.7 and the By appearing
in Proposition 2.6 are the same. That is, the perfect sampling algorithm A is
ultimately computing the point in G on the unique bi-infinite path and returning
its state. This can be seen by the fact that, since all paths started at time —1
reach the common vertez (0, By), any bi-infinite path in G must also pass through
(0,80). However, what is notably absent in Proposition 2.6 is any mention of
an algorithm to compute By. Whether such an algorithm exists in general is not
studied in the present research.

2.5. Bridge Graphs

The primary tool used in this document will be the theory of unimodular net-
works in the sense of [1]. Local finiteness is essential in the theory of unimodular
networks, but the Doeblin graph G may not be locally finite, as the following
result shows.

Proposition 2.9. If " _¢p.y < oo forally € S, then G is a.s. locally finite.
If G has fully independent transitions and for some y € S, Y g Pey = 00,
then G is a.s. not locally finite.

Proof. Both statements follow from the Borel-Cantelli lemmas. That is, for any
fixed (t,y) € Zx S, if ) g Pry < 00, then a.s. one has that only finitely many
of the events {f, (t — 1,z) = (t,y)},c g occur, showing (,y) has finite in-degree,
and hence finite degree, in G. On the other hand, if G has fully independent
transitions and for some fixed (¢,y) € Z x S one has ) ¢ psy = 00, then a.s.
infinitely many of the events {f; (t —1,2) = (t,y)},cg occur, so that (t,y) has
infinite degree. O



The remedy taken here is to instead concentrate on particular subgraphs
of G. In this section, subgraphs are introduced that are locally finite under
a positive recurrence assumption and turn out to have nice properties when
considered as random networks.

For each (t,2) € Z x S, and each y € S, let

72 () := inf {s >t Fo) = y} , o) (y) == 702 () — ¢ (6)

be, respectively, the return time and time until return of F**) to y. The
word return is used even when y # z, in which case it may be that F*%) is not
part of a state path that has visited y before time ¢. Note that the distribution
of ot (y) does not depend on ¢ because ¢ is stationary. Call a state z € S
positive recurrent if E[0(**)(z)] < oo or recurrent if 0(%%)(2) < 0o a.s. In
the Markovian case these are the usual definitions. If a state z € S is recurrent,
then indeed for every t € Z, F(t) visits z infinitely often.

For each fixed « € S, consider the subgraph B(xz) of G of all paths starting
from state x at any time. That is, B(z) is the subgraph of G with

teZ teZ

Call B(z) the bridge graph for state x and refer to it as either a bridge
EFF or bridge EFT depending on whether it is a forest or a tree. Note that
one of these possibilities happens with probability 1 because the number of
components in B(z) is shift-invariant.

Assumption 2.10. For the remainder of the document, assume there exists a
positive recurrent state x* € S, which is fived, and the notation B := B(z*)
refers to the bridge graph for state x*.

An example bridge graph appears in Figure 2. Equivalently, B can be de-
scribed in terms of descendants of vertices, viewing directed edges in G as point-
ing from a vertex to its parent. For each (t,y) € Z x S, define the descendants
of (t,y) in G to be

D) .= {(s,x) €ZxS: F&) = y} . 8)
Then B is also the subgraph of G with
V(B) = {(t,y) €ZxS:3s, (s,27) € D(W)}.

That is, B is the subgraph of G generated by vertices that have some descendant
in state z*. In particular, recalling (3),

yeB, «— Is,z* e DY (t,y)€Zx 8. (9)

Lemma 2.11 shows that if G is a.s. connected, then B is too.

10



A bridge graph inside the Doeblin graph
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Figure 2: An example bridge graph, in this case for state x* = 0, sitting inside
the Doeblin graph.

Lemma 2.11. Ifu,v € V(B) are in the same component of G, then they are
in the same component of B. In particular, if G is an EFT, then B is an EFT.

Proof. Consider times s,t € Z. Suppose (s,z*) and (¢,2*) are in the same com-
ponent of G. Then F2") and F®*") meet at some point. But, by definition,
the paths of F(**7) and F(**) are included in B. Hence (s,z*) and (¢, 2*) are
in the same component of B. Now if u,v € V(B) are in the same component of
G, u is in the same component in G as some (s,2*) and v is in the same com-
ponent of G as some (t,z*), and (s,2*) and (¢,2*) are in the same component
of B by the previous part. Hence u, v are in the same component of B. O

The condition that B is an EFT is equivalent to strong coupling convergence
(defined and studied in [6, 4, 9]) of F(®*") to a stationary version of the SRS.
However, simple conditions for B to be an EFT are not known outside of the
Markovian case, where Proposition 2.3 showed that if P is irreducible, aperiodic,
and positive recurrent, then G is an EFT. Another (not neccessarily easy to
check) condition for B to be an EFT will be given in Corollary 4.8.

The main tool used in this paper is unimodularity of random networks. The
first form of unimodularity used is stationarity, i.e., the unimodularity of the
deterministic network Z rooted at 0 and with neighboring integers connected.
Unimodularity of Z gives a helpful way to reorganize proofs based on stationarity
in terms of transporting mass between different times. Recall that a (measur-
able) group action 6 : Zx Q — Q of Z on Q is called P-invariant if P(6; € -) =P
for all t € Z. The shift operator on ZZ is an example of such an action.

11



Lemma 2.12 (Mass Transport Principle for Z). Suppose w : Z x Z — Rxq is
a random map. Also suppose 0 : Z x Q — Q is a P-invariant Z-action on €,
and that the two are compatible in the sense that w(s,t) o0, = w(s+r,t+ 1)
almost surely for each s,t,r € Z. Then with wt := 3 ,., w(0,t) and w™ :=
> sezw(s,0), one has

Ewt] = Blw]. (10)

Proof. One calculates

Ew'] =) E[w(0,t)] = > Ew(0,t)00_] =Y E[w(-t,0)] = E[w]

tez tez tez
as desired. 0
The mass transport principle for Z immediately gives the following.

Proposition 2.13. For allt € Z, E[#By] < E[o®*7) (2*)]. In particular, B is
a.s. locally finite, even if G itself is not.

Proof. Without loss of generality, 2 is the canonical space Z%, with the driv-
ing sequence (&), being coordinate maps. Then ¢ : Z x Q — € defined by
0s((&t)iez) = (€stt)ey is a P-invariant measurable Z-action on Q. Choose
the mass transport w(s,t) := 1{0(571*)(I*)>t_5>0}. The fact that one has

%) (%) 0 0, = o(5T727) (z*) for all s,t,r € Z implies w is compatible with .
Then wt = (%) (2*) — 1, and w™ = # {s<0: o7 (%) > s|} = #Bo—1,
where this inequality follows from the fact that for every y € By \ {«*}, there
is s < 0 such that o(**7)(z*) > |s| and Fo(s’w*) = y. Thus the mass transport
principle for Z gives E[o(®*7) (2*) — 1] > E[#Bj — 1], from which the result
follows. O

The proof style of Proposition 2.13 may be repeated in many different ways
and the boilerplate setup of the proof can be mostly omitted once one under-
stands the flow of the proof. The shortened version of the proof of Proposi-
tion 2.13 is given to exemplify how much can be omitted without losing the
main idea.

Proof (shortened). Let the mass transport w(s,t) send mass 1 from s to all
times ¢ strictly after s and strictly before F(5%") returns to z*. Then wt =
o0 (z*) — 1 and w™ = # {s <0: o) (z*) > |s|} > #By — 1, where this
inequality follows from the fact that for every y € By \ {z*}, there is s < 0 such
that o(**") (z*) > |s| and Fo(s’x*) = y. The mass transport principle finishes the
claim. O

One now sees the versatility of using even the simplest form of unimodularity.
A list of mass transports and the results they give, all by following the same proof
style, appears in Section 6.2 in the appendix. Some of the mass transports give
new results, and others recover well-known results, such as fact that 7(y)/m(z*)
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is the expected number of visits of a Markov chain started at x* to y before
returning to x*, and 1/m(x*) is the expected return time of a Markov chain
started at z* to return to x*, where 7 is the invariant distribution for the Markov
chain. The next section reviews the more general theory of random networks and
unimodularity, then shows how to embed subgraphs of G as random networks,
so that eventually one may find a unimodular structure inside G.

3. Random Networks

3.1. Definition and Basic Properties

See [1, 16] for a more thorough review of random networks than what is provided
here. A network is a graph I' = (V(I"), E(T")) equipped with a complete sepa-
rable metric space (Zr, dg;.) called the mark space and two maps from V(T")
and {(v,e) :v € V(I'),e € E(T'),v ~ e} to Er, where ~ is used for adjacency of
vertices or edges. The image of v (resp. (v,¢e)) in Er is called its mark, which
is extra information associated to the vertex (resp. edge). The mark of (v,e)
may also be thought of as the mark of e considering it to be a directed edge
with initial vertex v. The graph distance between v and w is denoted dr (v, w).
Unless explicitly mentioned otherwise, networks are assumed to be nonempty,
locally finite, and connected.

An isomorphism between two networks with the same mark space is a
graph isomorphism that also preserves the marks. A rooted network is a pair
(T", 0) in which I is a network and o is a distinguished vertex of I called the root.
An isomorphism of rooted networks is a network isomorphism that takes the
root of one network to the root of the other. Similar definitions apply to doubly
rooted networks (I, 0, v). For convenience, from now on consider only networks
with mark space (ZEuniv, dz,,;, ), Where Zyniy is some fixed uncountable complete
separable metric space, such as NV or the Hilbert cube, since all possible mark
spaces are homeomorphic to a subset of such a Z.,;,. Let G denote the set
of isomorphism classes of nonempty, locally finite, connected networks, and let
G, (resp. G.x) be the set of isomorphism classes of singly (resp. doubly) rooted
networks of the same kind. The isomorphism class of a network I" (resp. (T, 0),
or (', 0,v)) is denoted by [I'] (resp. [I',0] or [T, 0, v]).

The sets G, and G, are equipped with natural metrics making them com-
plete separable metric spaces (cf. [1]). The distance dg, ([T'1, 01], [T'2,02]) be-
tween the isomorphism classes of (I'1,01) and (I'z,02) is 1/(1 + «), where « is
the supremum of those r > 0 such that there is a rooted isomorphism of the
balls of graph-distance |[r] around the roots of I'1,T's such that each pair of
corresponding marks has distance less than 1/r. The distance on G.. is de-
fined similarly and the projections [I',0,v] — [I',0] and [I',0,v] — [I',v] are
continuous.

A random (rooted) network is a random element in G, equipped with
its Borel o-algebra B(G.). A random network [I', o] is called unimodular if
for all measurable g : G.. — R0, the following mass transport principle is
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satisfied:

E Z g[raoav]:E Z g[I‘,’U,O]. (11)

veV () veV(T)

Heuristically, the root of a unimodular network is picked uniformly at random
from its vertices. However, since there is no uniform distribution on an infinite
set of vertices, the mass transport principle (11) is used in lieu of requiring the
root to be picked uniformly at random. One should take care to note that the
sums in the previous equation depend only on the isomorphism class [T, o] and
not which representative is used.

Next, the notions of covariant vertex-shifts, foils, connected components,
and the cardinality classification of components of a unimodular network are
reviewed. See [2] for a reference on these concepts. A (covariant) vertex-shift
is a map ® which associates to each network I' a function ®p : V(I') — V(I')
such that ® commutes with network isomorphisms and the function [T, 0, v] —
1{®r(0)=v} 18 measurable on G... For a vertex-shift ®, define two equivalence
relations on each network T' by saying u,v € V(T') are in the same ®-foil if
O (u) = OF(v) for some n € N, or in the same P-component if ®f(u) = O (v)
for some n,m € N. Two vertices are in the same ®-component if their forward
orbits under ® intersect, whereas they are in the same ®-foil if, after some finite
number of applications of ®, the vertices meet. The ®-graph of I" is the graph
drawn on I' with vertices V(I') and edges from each v € V(T') to ®r(v). The
following is a special case of the classification theorem appearing in [2].

Theorem 3.1 (Foil Classification in Unimodular Networks [2]). Let [T', 0] be a
unimodular network and ® a vertex-shift. Almost surely, every vertex has finite
degree in the ®-graph of T'. In addition, each component C' of the ®-graph of T
falls in one of the following three classes:

(i) Class F/F: C and all its foils are finite, and there is a unique cycle in C.

(ii) Class I/F: C is infinite but all its foils are finite, there are no cycles in
C, and there is a unique bi-infinite path in C.

(i1i) Class I/I: C is infinite and all its foils are infinite, and there are no cycles
or bi-infinite paths in C.

The last tool needed from [2] is the so-called no infinite/finite inclusion
lemma, which is used heavily in the proof of Theorem 3.1. To state it, the
following definitions are needed. A covariant subset (of the set of vertices)
is a map C which associates to each network I' a set Cr C V/(I') such that
C commutes with network isomorphisms, and such that [I',0] — liecpy is
measurable. A covariant (vertex) partition is a map II which associates
to all networks I' a partition IIp of V(I') such that IT commutes with network
isomorphisms, and such that the (well-defined) subset {[G,0,v] : v € (o)} C
G« is measurable, where IIr(0) denotes the partition element in Iy containing
o. Then one has the following.
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Lemma 3.2 (No Infinite/Finite Inclusion [2]). Let [T, 0] be a unimodular net-
work, I a covariant partition, and C' a covariant subset. Almost surely, there
is no infinite element E of Iy such that E N Cg is finite and nonempty.

3.2. Embedding Subgraphs of the Doeblin Graph as Ran-
dom Networks

In order to view a subgraph of G as a random network, one must ensure the
subgraph is nonempty, locally finite, connected, and a root o has been suitably
chosen. Since the vertices of G come from the fixed countable space Z x S, the
following setup will help to verify all the technicalities.

Let V :=7Z x S. Suppose that

. Q0— {0, 1}V X EV X {0, ].}VXV X EVXV = (vafV;fEagE) (12)

is measurable (where the codomain is given its product topology and corre-
sponding Borel o-algebra). Then I'(w) can be considered for each w € Q as a
(possibly empty, possibly not locally finite, possibly disconnected) network in
the following way. For each u,v € V| interpret

(i) f
(i) f
(iii) &

(iv) €

That is, use items (i) to (iv) to define V(T'), E(T'), and the marks of vertices and
edges in I'. Note that fr must be symmetric because edges are not directed, but
&g may not be, since each edge is associated with two marks, one per vertex.
If one wants to consider directed edges, one instead uses undirected edges and
uses the marks on edges to specify which direction the edge should point. The
definition of &y (u) when u ¢ V(T') is irrelevant, and similarly for the definition
of fg(u,v) and &g (u,v) if either of u or v is not in V(I"). All statements about
the network defined by I' are then translated into statements about the maps

(fv,&v, fg,&r). For instance,

{T" is not empty} = {Z fv(v) > 0} .

veV

v (v) as the indicator that v € V(T'),

£(u,v) as the indicator that the edge {u,v} € E(T'),
v(u) as the mark of u, and
¢e(u,

v) as the mark of the vertex-edge pair (u, {u,v}).

This is exactly the kind of construction used to define the Doeblin graph G. In
the case of G,

(i) fy=1onZ xS,
(11) JE ((t’x)a (t + 17h(x7£t))) = fE ((t +1, h(zvft))’ (t,l‘)) =1 for all (t,l‘) €
Z x S and fg = 0 otherwise,
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(ili) &y (t,z) =& for all (t,x) € Z x S, and

(iv) €g ((t,z),(t+ 1,h(x,&))) =1 for all t € Z,z € S to indicate the edge is
directed forwards in time.

This construction also works for the bridge graph B as well. When a I' has
been constructed as in this section, one can see I' as a random network after
any measurable choice of root, given that it is nonempty and locally finite.

Lemma 3.3. Suppose T = (fv,&v, fE,€E) is as above and a.s. T' is nonempty,
locally finite, and connected. Then for any measurable choice of root o € V(T'),
[T, 0] is a random network.

Proof (sketch). Write the event that [I', o] is within e > 0 of some fixed network
[T, 0] as a countable union over rooted isomorphic copies (I”,0’) of (T',0) with
vertices in V of the event that o = o/, the neighborhood of radius [1] around o is
exactly I”, and the marks &y (u) for u € V(I”) and &g (v, w) for {v,w} € E(I")
are within e of the corresponding vertex and edge marks of (IV,0’). Each of
these conditions individually are written in terms of events using the maps
fv,&v, fe,&r, showing the desired measurability of w — [I'(w), o(w)]. The full
proof of Lemma 3.3 given in the appendix.

Thus indeed G may be seen as a random network when rooted and marked,
assuming it is locally finite and connected. But the question remains whether
this may be done in such a way as to make G unimodular. The first approach
one might take is to investigate whether G, rooted at (0, Xy) for some (random)
choice of Xg € S, is unimodular. Two natural choices, at least in the standard
CF'TP setup, are to take X to be the output of the CFTP algorithm, or to take
Xo to be independent of G. For simplicity, the standard CFTP setup refers to
the case where G has fully independent transitions, S is finite, and the CFTP
algorithm succeeds a.s. The following proposition determines when G can be
unimodular under the previous choices of Xj.

Proposition 3.4. Suppose G is an EFT, that G has each (t,x) € V(G) marked
by (z,&), and that Xg is a random choice in S. Then

e if [G,(0,Xy)] is unimodular, then S is finite and Xo is uniformly dis-
tributed on S,

o if Xy is independent of G and uniformly distributed on a finite S, then
[G, (0, X0)] is unimodular, and

o if Xy is the output of the CFTP algorithm in the standard CFTP setup,
then [G, (0, Xo)] is unimodular if and only if S has a single element.

Proof (sketch). The first point follows by constructing for each z,y € S a mass
transport that, when applied to G, sends mass 1 within vertical slices of G
from the vertex in state z to the vertex in state y. Unimodularity then gives
P(Xg = z) = P(Xo = y). The second point follows from the definition of
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unimodularity. The third point follows by noting that the output of the CFTP
algorithm has at least one child, but unimodularity implies that it must have
one on average, so a.s. it has one child. A nonempty tree where every vertex
has one incoming and one outgoing edge is isomorphic to Z, so S can only have
one state. The full proof of Proposition 3.4 is given in the appendix.

While choosing X uniformly distributed on S and independent of G works
when S is finite, unimodularity of the whole G is doomed in the general case,
as there is no uniform distribution on an infinite S. This is the reason for
introducing the bridge graph B, which is locally finite. However, the bridge
graph may still not be connected, so a spine is added to it to make it connected.

Corollary 3.5. Let B be B with spine added, i.e. with edges from each
(t,x*) to (t+1,2%) for allt € Z added. Then for any measurable marks and

any measurable choice of root o € V(B), [B, 0] is a random network.

Proof. One has that (0,2*) € V(B), so B is nonempty. Also B is locally finite
by Proposition 2.13 and the fact that adding the spine has increased the degree
of each vertex by at most two. Finally, since each v € V(B) is connected to some
(t,z*), and the spine in B connects all such vertices, B is connected. Lemma 3.3

finishes the claim. O

Everything is in place to see the unimodular structure hidden in G, which
is handled in the next section.

4. Unimodularizability and its Consequences

4.1. Unimodularizability of the Bridge Graph

The following result identifies the unimodular structure inside G. For the rest
of the document, each (¢,y) € V(B) is marked by (y,&;) whenever considered
as a vertex in a rooted network.

Theorem 4.1. Any random network with distribution

O R 1 —
P°(4) := ME we%:(ml{[B’w]eA} . AeB(G.). (13)

is unimodular. The spine need not be added and B may also be used instead of
B if B is already connected.

One may interpret the distribution PP as a size-biased version of the network
obtained by starting with B and selecting the root uniformly from By.

Proof. By Corollary 3.5, B with marks as specified and any choice of root is a
random network. Therefore, all the quantities in the following calculation are
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measurable. Let g : G, — R>( be given. One has

/ S o[l 0,0] PO(IT, o])

UEV(F)

et DED N 7]

yEBo veV(B)

1 _
= E|1 / B 1.
E#Bo] Z [Lt0.9).tev®)19B, (0,9), (t,y)]]

Y,y €StEZ

Stationarity on Z implies the right hand side is equal to

1 A
E[#Bo] > B[ty 0u)ev®ndB, (=t y), (0,5)]]

y,y' ES,tEL

1 _
" E[#B Z E [1{(t,y),(0,y’)EV(B)}g[Ba (t,v), (O,y’)]]
[# } y,y' ES,LEL
E Yo >y vl
y' €BoveV(B)
/ > gl 0,0 PO(d[T, 0]).
*veV ()
Thus PP is the distribution of a unimodular network. O

The view of PP as a size-biased version of a network is formalized in the
following.

Proposition 4.2. Let o be, conditionally on Vo(B), uniformly distributed on
Vo(B) and independent of B. Then under the size-biased measure P(E) :=
mE[#BolE] for each E € F, the random network [B, o] has the distribu-

tion PP.

Proof. In what follows, V ranges over the sets for which P(V5(B) =V) > 0, of
which there are at most countably many because By is a.s. a finite subset of the
countable S. For any A € B(G,) and with C := E[#B],

=G Y IVIP(Vo(B) = V)P([B,0] € A| Vy(B) = V)
v

= %Z S IVIP(Vo(B) =V)P(o=v,[B,0] € A| Vp(B) =V)

V veV

18



which, by the conditional independence of o and B, is

1 1.
=C D> IVIP(Vo(B) = V) P(B.v € 4| Vo(B) =V)
V wveVv | ‘
1
- 5E Z Z 1{[§=U]€A7VO(B):V}
V veV
— Po(4)
as claimed. O

4.2. I/F Component Properties

For any measurable event A C G, in the o-algebra of root-invariant events,
i.e., such that if [I',0] € A then [I',v] € A for all v € V(I), one has

1 1

- E[#BO]E we%(B)l{[B,w]eA} ZME #Bol{[g(w)]eA}].

P (4)

This immediately gives the following.

Lemma 4.3. One has that PP and P([B, (0,2%)] € -) have the same root-
imwvariant sets of measure 0 or 1. O

Next, a vertex-shift that is designed to follow the arrows in B is defined. It
plays the same role as f; but is defined for all networks. From now on, let ®
denote the follow vertex-shift defined on any network IT" for each u € V(T') by
Or(u) := v if either:

(i) there is a unique outgoing edge from w and this edge terminates at v, or

(ii) w is in state * and there is a unique outgoing edge from u that does not
terminate at a vertex in state x*, and this edge terminates at v.

If neither of the two conditions above is met for any v € V(I"), define O (u) := u
for concreteness. Here a vertex is considered to be in a state y € S when the
first component of its mark is y (recall that a vertex (¢,y) € V(B) is marked by
(y,&t)). The second clause in the definition of ® is there because of the presence
of the spine in B, so that if the root is in state z* the vertex-shift will choose
to follow the arrow in B instead of following the arrow to the next element of
the spine, unless the two coincide. By construction, ®g(t,z) = f (¢, z) for all
(t,z) € V(B).

The event that all ®-components of a network are of class I/F is root-
invariant, and moreover it has P([B, (0,2*)] € -)-probability one because the
®-graph of B is B itself, the ®-components of B are the components of B, and
the ®-foils of B are subsets of the sets (V;(B)), ., which are finite. Hence P"

is concentrated on the set of networks having only ®-components of I/F class.
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It follows that any a.s. root-invariant properties that follow from ED being uni-
modular and having I/F components automatically apply to P([B, (0,z*)] € -)
as well. Such properties will be referred to as I/F component properties

and are explored in Sections 4.2.1 and 4.2.2.

4.2.1. Bi-recurrent Paths

This section studies bi-infinite paths in G and identifies special bi-infinite paths
that have a certain recurrence property backwards in time. Firstly, it is possible
to have multiple bi-infinite paths in G because G is disconnected.

Example 4.4. Consider the case where S := {1,2} and hgen and (&), are
chosen so that the transition (¢,1) — (¢ 4+ 1,2) occurs if and only if (¢,2) —
(t +1,1) occurs. In this case G has two components a.s. Each component is
itself a bi-infinite path.

Moreover, even when G is connected, it it still possible to have multiple
bi-infinite paths in G.

Example 4.5. Consider the case of S := N with fully independent transitions.
Let the transition matrix P be determined as follows. In state 0, transition
to a Geom(1/2) random variable, and from any other n # 0, deterministically
transition from n to n — 1. In this case, from every vertex (s,x) € Z x S, there
is a bi-infinite path (¢, X;),., in G for which X,_p =k + 2 for all £ > 0. Thus
there are infinitely many bi-infinite paths, despite the fact that in this case G
is an EFT, which follows from Proposition 2.3.

In Example 4.5, even though G is connected, G has infinitely many bi-
infinite paths. However, amongst the bi-infinite paths, there is one special
bi-infinite path. The special path is the unique bi-infinite path that visits every
state infinitely often in the past. It turns out that this is the correct kind of
path to look for in general. A bi-infinite sequence (z),., in S is called bi-
recurrent for state z if {t € Z: x; = 2} is unbounded above and below. If
(w¢),cq is bi-recurrent for every x € S, it is simply called bi-recurrent. A state
path (X;),.; in G is called bi-reccurent (for state z) if a.s. its trajectory is
bi-recurrent (for state ). Recall that ® denotes the follow vertex-shift. The
existence of bi-infinite paths in ®-components of a network is an I/F property,
and hence one has the following.

Proposition 4.6. It holds that B has a unique bi-infinite path in each compo-
nent a.s. The corresponding state paths are bi-recurrent for x* and these are
the only state paths in all of G that are bi-recurrent for x*. Moreover, for each
y € S, these state paths either a.s. never visit y, or are bi-recurrent for y.

Proof. By Theorem 3.1, PP-a.e. network has a unique bi-infinite path in each
d-component, where @ is the follow vertex-shift. But having a unique bi-infinite
path in each ®-component is a root-invariant event, and hence P-a.s. B has a
unique bi-infinite path in each ®-component. Since the ®-components of B are
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the components of B, P-a.s. every component of B contains a unique bi-infinite
path.

Let IT be the covariant partition of ®-components. Define the covariant
subset C' on a network I' by letting Cr be the subset of vertices of I' that
are either the first or last visit to a given state y € S, if they exist, on the
unique bi-infinite path in their ®-component of I, if such a path exists. The no
infinite/finite inclusion lemma, Lemma 3.2, implies that P" is concentrated on
the set of networks I with no first or last visit to y on the unique bi-infinite paths
in each ®-component of I'. This property is root-invariant and hence a.s. the
state paths corresponding to the unique bi-infinite paths in each component of
B either do not visit state y or are bi-recurrent for y. Taking a countable union
over iy € S shows this property holds simultaneously for all y € S. Since the
unique bi-infinite path in each component of B at least hits x*, one may at least
conclude the paths are bi-recurrent for x*. Finally, there cannot be any other
bi-recurrent state paths for * in G because, by definition, a bi-recurrent state
path in G will lie in B since it visits * at arbitrarily large negative times. [

The next result applies Proposition 4.6 to the nicest case, where G is a tree.

Corollary 4.7. Suppose that G is an EFT. Then G contains a unique (up
to measure zero modifications) state path (B:),c, that is bi-recurrent for x*.
Moreover, (Bt),cq is shift-covariant, stationary, and for each t € Z one has
that B; is measurable with respect to o(§s @ s < t). Additionally, (Bt),cq is
bi-recurrent for every x € S that is positive recurrent.

Proof. Proposition 4.6 shows that a.s. there is a unique bi-infinite path in each
component of B, and the corresponding state paths are bi-recurrent for *. Since
G a.s. has only one component, B does too. The second part of Proposition 4.6
then implies the bi-recurrent state path for * in B is the only bi-recurrent state
path for z* in G. One would like to define (8;),., to be the unique bi-recurrent
state path for z* in G. However, in that case, (3),., would only be defined

a.s. For concreteness, define §; for each t € Z by letting By := lims_, Ft(s’z*)
on the event that the limit exists, and 5; := z* otherwise. On the a.s. event
FE that B is connected, #B; < oo for all t € Z, and there is a unique bi-
infinite path in B, one has that (, 3),., coincides with the unique bi-infinite

path in B. This is because if, for some ¢ € Z, lim,_, Ft(s’x*) does not exist,
then either #B; = oo, or there exist two states z,y € S such that (¢,2) and
(t,y) have (necessarily disjoint) locally finite infinite trees of descendants in B.
The former case is forbidden on E, and, in the latter case, Konig’s lemma would
imply the existence of two distinct bi-infinite paths in B, which is also forbidden
on F. Thus limg_, Ft(s’x*) exists for all t € Z on the event E, and, on this
event, the unique bi-infinite path in B must therefore be (¢, 3¢),.,. The shift-
covariance and hence stationarity of (3;),., follows from its definition in terms
of F(5=") for each s € Z. For each t € Z, measurability of 8; with respect to
o(&s + s < t) also follows from its definition, since each Ft(r’z*) with » < t is
o(&s : s < t)-measurable.
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Now let (Y3),c;, be the unique bi-recurrent state path for some other y €
S that is positive recurrent. Since G is a.s. connected, (3:),o, and (Yi),cz
eventually merge, a.s. However, stationarity forbids that there is a first time
such that 8; = Y}, so it must be that 8; = Y; for all ¢ € Z. Thus (8;),., is
bi-recurrent for every y € S that is positive recurrent. O

Corollary 4.7 shows that, like in the standard CFTP setup, there is a (g
living at time 0 in G that is a perfect sample from the stationary distribution
of the Markov chain or SRS. However, unlike in the standard CFTP setup, it
is not known whether there is an algorithm that can find 5y in finite time.

Another consequence of the existence of bi-recurrent paths in B is that one
can bound the number of components of B.

Corollary 4.8. The a.s. constant number n of components of B is no larger
than min {k : P(#Bo = k) > 0} < co. In particular, B has finitely many con-
nected components, even if G has infinitely many components, and if P(#Bg =
1) > 0, then B is an EF'T.

Proof. The number of components of B is shift-invariant and hence a.s. constant.
Each component of B contains a bi-recurrent path by Proposition 4.6. Each bi-
recurrent path intersects V5(B) in a different element since they are in different
components of B. It follows that n < #Bg a.s. If P(#By = k) > 0 for some k,
then it follows that n < k. O

The deterministic cycle on n states shows that the bound in Corollary 4.8
can be achieved for each n. In general, any bi-infinite stationary process on S
(or any countable set) must be bi-recurrent.

Proposition 4.9. Suppose that (X¢),., s a stationary process taking values in
S. Then a.s. (Xt),cy 48 bi-recurrent for every x € {Xi},cq-

Proof. For each x € S, stationarity forbids that there is a first or last visit of
(Xt),ez to x since such an occurrence would have to be equally likely to happen
at all times ¢ € Z. Thus, a.s. either x ¢ {X;},., or {t € Z: X; = x} must be
unbounded both above and below. The countability of S finishes the claim. [

The remainder of the section specializes to the Markovian setting again. In
the Markovian setting, bi-recurrence is actually equivalent to stationarity in the
irreducible, aperiodic, positive recurrent case.

Theorem 4.10. Suppose that P is irreducible, aperiodic, and positive recurrent,
and that (X¢),cq s a Markov chain with transition matriz P. Then (X¢),cq is
stationary if and only if it is bi-recurrent for any (and hence every) state.

Proof. By Theorem 2.2, it is possible to assume without loss of generality that
(X¢),cz is a state path in the Doeblin graph G with fully independent tran-
sitions. By Proposition 2.3, G is an EFT and therefore Corollary 4.7 implies
that G contains a bi-recurrent state path ()., that is, for all y € S, the a.s.
unique bi-recurrent state path for state y in G. Moreover, 3; ~ m for all t € Z,
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The bi-recurrent path in G

14 \\\ ¥ Typical spurious bi-infinite path
13 1 -e- Unique bi-recurrent path

12 4 —e— Doeblin graph
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Figure 3: The Doeblin graph from Example 4.5 with the bi-recurrent path and
a spurious path distinguished.

where 7 is the stationary distribution for P. If (X;),c, is bi-recurrent for some
y € S, then, by uniqueness, X; = 3; for all t € Z, a.s. In particular, (X;),, is
stationary. The converse follows from Proposition 4.9 and irreducibility. O

A bi-infinite path in G whose state path is not bi-recurrent for any state
x € S will be called spurious. Observe the difference between spurious bi-
infinite paths and the unique bi-recurrent path in Figure 3. Viewed in reverse
time, a spurious path must run off to co in the sense that for every finite set
F C S, the reversed path eventually leaves F' forever. It is possible for G to
contain spurious bi-infinite paths, as was seen in Example 4.5.

Say that P™ converges uniformly (to m as n — oo) if P is irre-
ducible, aperiodic, and positive recurrent with stationary distribution 7, and
SUp,eg ||[P™(x,-) — 7| — 0 as n — oo. For example, this is automatic if P is
irreducible, aperiodic, and S is finite. Some authors call P uniformly ergodic,
but the term ergodic is not used here to avoid a terminology collision with
ergodic theory. Uniform convergence to 7 is also equivalent (cf. [19] Theorem
16.0.2 (v)) to the statement that there is m such that P™(z,-) > ¢(-) for all
x € S, for a measure ¢ which is not the zero measure. It is also equivalent
(cf. [10] Theorem 4.2) to the fact that the CFTP algorithm succeeds in the
case of fully independent transitions, i.e. the backwards vertical coupling time

inf {t >0: F( te) - Fé_t’y),Vx,y € S} is a.s. finite.
Together, the following two results say that when a Markov chain that mixes
uniformly is started in the infinite past, it has converged to its stationary dis-
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tribution by any finite time.

Proposition 4.11. Suppose P™ converges uniformly to m asn — oo and G has
fully independent transitions. Then G contains no spurious bi-infinite paths.

Proof. For every s <t let C,; be the event that Ft(s’z) = Ft(s’y) forall z,y € S.
That is, Cs ¢ is the event that starting at time s, all paths in G collapse to a
single state by time t. Note that P(C, ;) depends only on t — s. Since G has
fully independent transitions and P™ converges to m uniformly as n — oo, by
e.g. Theorem 5.2 in [10], there exists some k € N such that P(C;;) > 0 when
t —s > k. Consider E,, := C_j(n41),—kn for each n € N. One has P(E,) =
P(Ep) > 0 for all n and the FE,, are independent. It follows that a.s. infinitely
many of them occur. On an w for which infinitely many F,, occur, there is at
most one bi-infinite path in G, and thus any bi-infinite path in G must coincide
with the unique bi-recurrent path guaranteed to exist by Corollary 4.7. O

It is a classical result that it is possible to find a bi-infinite stationary version
(Xt),cz of a Markov chain that has a stationary distribution. The following
shows that, in the case of uniform convergence to m, this is the only way to
extend a Markov chain to have time index set all of Z. That is, if (X;),, is
a Markov chain that conveges uniformly to its stationary distribution, then it
must be that X; ~ 7 for all t € Z.

Proposition 4.12. Suppose P™ converges uniformly to m as n — oo. Then
every Markov chain (Xi),c, with transition matriz P is stationary and bi-
recurrent. The subtle assumption here is that the time index set is all of Z.

Proof. By Theorem 2.2, one may assume (X), ., is a state path in G with fully
independent transitions, which is then an EFT by Proposition 2.3. Since P™
converges uniformly to m as n — oo, G contains no spurious bi-infinite paths
by Proposition 4.11, and hence (X;),., must be the bi-recurrent state path.
Theorem 4.10 then implies (X;),., is stationary. O

Proposition 4.12 may fail for an irreducible, aperiodic, and positive recurrent
P if P does not converge uniformly to its stationary distribution. Indeed, it was
already shown, e.g., in Example 4.5, that it is possible for G to admit spurious
bi-infinite paths. If (X;),., is a proper state path in G that corresponds to a
spurious bi-infinite path, then (X),., is a Markov chain with transition matrix
P, but it is not stationary since it is not bi-recurrent. Recall that B(z) denotes
the bridge graph in G using z as the base point instead of z*.

Proposition 4.13. Suppose P is irreducible, aperiodic, and positive recurrent,
and that G has fully independent transitions. If

(i) S is infinite,
(ii) G is locally finite, and

(i1i)) G contains no spurious bi-infinite paths,
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then

( V(B(2) = {(t,8,) : t € Z}, (14)

zeS

where (B¢),cy s the unique bi-recurrent state path in G. That is, the bi-recurrent
path in G is the only thing common to all of the bridge EFTs. Alternatively, if
S is finite and has at least 2 states, then a.s.

( V(B() 2 {(t,8,) : t € Z}. (15)

zeS

Proof. For each x € S, the bi-recurrent path is in B(x) because it is bi-recurrent
for . Suppose S is infinite, G is locally finite, and that G contains no spurious
bi-infinite paths. Consider a vertex v € V(G) not on the bi-recurrent path.
The tree of all descendants of v in G must be finite, else Konig’s lemma would
give a bi-infinite path in G that is distinct from the unique bi-recurrent path
since v is not on the bi-recurrent path. Since G contains no spurious bi-infinite
paths, this is impossible. Since the tree of descendants of v is finite but S is
infinite, there is some state x € S such that v has no descendant in state z. In
particular, v ¢ V(B(z)), showing that nothing off the bi-recurrent path can be
common to all the bridge EFTs.

Next suppose that 2 < #S < oo. It suffices to give a finite determin-
istic graph T" that is a subgraph of G with positive probability such that
when some time-translate of I' is a subgraph of G, [,.qV(B(z)) contains
a vertex not on the unique bi-infinite path in G. Firstly, since S is finite,
choose a tree T on Z x S that occurs with positive probability and is an ex-
ample witnesses of the a.s. finiteness of the backwards vertical coupling time

inf {t >0: Féft’x) = Féft’y),Vx,y € S}. Suppose T is rooted at (0,zp). In
particular, V(T) C (—o0,0] x S. By irreducibility of P and the fact that
#S > 2, choose L = (z¢,x1,...,2,) a finite path in S using only positive
probability transitions from xy back to xy = x, that passes through all states
of S and has the property that x; # x;41 for any i. Note that

Lo :={(t,x¢) : t=0,...,n}, Ly ={(t+1,2):t=0,...,n} (16)

do not intersect. Moreover, Ly and T intersect only at the vertex (0, z), and
Lq and T do not intersect. Let I" be the union of T', Ly, and L. The edges of
T, Lo, and Ly all occur with positive probability in G, and none of them have
the same initial vertex, so that in fact they are comprised of independent edges
in G. Since I" has only a finite number of edges, it follows that I' C G occurs
with positive probability. Moreover, when I' C G occurs, the vertex (n,z,_1) €
V(B(z)) for all z € S, but it is not on the bi-infinite path. This is because, by
construction, (0,zg) is on the bi-infinite path in G and therefore Ly makes up a
segment of the bi-infinite path in G. But, L includes a representative for every
state, so for every @ € S there is an s € Z such that € D", Finally,
V(Lo) NV (L1) =0 so (n,x,_1) is not on the bi-infinite path in G. O
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4.2.2. Other I/F Component Properties

The existence and uniqueness of a bi-infinite path in each ®-component of a
network is one I/F property that was studied at length in Section 4.2.1, which
centered around bi-recurrent paths in B. However, there are many other poten-
tial things to say about B following from its I/F structure. A few of them are
discussed in this brief section.

The first is the general structure of a network with only I/F components.
Each component of B contains a unique bi-infinite path. Points on a bi-infinite
path are sometimes referred to as immortals due to the fact that they do
not disappear after an infinite number of applications of the follow vertex-shift
®. A component evaporates if each point disappears after a finite number
(depending on the point) of applications of ®. Thus, in the case of B, none of
the components evaporate. Mortals are those points in V(B) that do disappear
after a finite number of applications of ®, i.e. those that have only finitely many
descendants. Each component of B contains a bi-infinite path of immortals,
and each immortal has exactly one child who is immortal. Thus the immortals
within a component are ordered like Z in a shift-covariant way. Hanging off
of each immortal is then a (possibly empty) tree of mortals, the descendants
of the immortal who are not themselves immortal and whose closest immortal
ancestor is the given immortal. With this viewpoint, each component of B can
be seen as a shift-covariant bi-infinite sequence of finite rooted trees, where each
immortal is the root of its tree. If there is only one component of B, then it has
already been noted that there is a unique bi-infinite path in B whose state path
(Bt) sy, is stationary. However, more can be said in this case. If there is only one
component of B, then in fact the whole sequence ([Q, (t, 8t)]),c is stationary,
where @, is the tree hanging from the immortal (¢, ;). It is important here
that the isomorphism class of @; is used and each vertex (¢,y) € V(B) is
marked with (y, &), otherwise the sequence would not be stationary due to the
strictly increasing time coordinate. This view of B as a joining of trees gives
an alternative way of looking at B compared to the view of B as a union of
bridges between x* at different times. Yet another viewpoint is that of B as
a sequence of vertical slices. This idea has already been explored slightly in
that the way the root was chosen in the definition of the unimodular measure
PU is by choosing a root from one of these vertical slices. The view of B as
a sequence of vertical slices is explored more in Section 4.3.1 and is the main
topic of Section 4.3.2.

Additionally, the list of mass transports given in the appendix gives some
integrability results relating these three viewpoints. In particular, in each way
of viewing B there is a natural way to split B into pieces. In the view of B as
a joining of a sequence of trees of mortals hanging off an immortal, the vertices
are partitioned by which tree they are in. In the view of B as a sequence of
vertical slices, the vertices are partitioned by which slice they are in. In the view
of B as paths started from state x*, vertices are partitioned by the time they
first return to z*. In fact, the mass transport arguments given in the appendix
show that the mean number of vertices in a partition element is the same for
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all three viewpoints. See the list of mass transports in the appendix for a more
detailed description of these results and other finer-grained results.

4.3. Applications to Simulating the Bridge Graph

4.3.1. Local Weak Convergence to the Bridge Graph

It was shown in Proposition 4.2 that the measure P” may be thought of as an
appropriately size-biased version of a network with the root picked uniformly
at random from individuals at time 0. A common reason for size-biasing to
show up is when picking uniformly at random across a population and asking
the size of the group an individual is in. Picking uniformly at random is what
unimodularity models, so one might expect that a unimodular network can
be approximated by picking the root uniformly at random from a very large
but finite sub-network. At present, whether all unimodular networks can be
approximated in this way is an open problem [1]. In the case of the unimodular
bridge EFF, it will be shown directly that indeed it can be approximated by
finite sub-networks with a root picked uniformly at random.

In this section, different ways of approximating the unimodular version of B
by finite subgraphs are considered. Recall that B denotes B with spine added,
i.e. B with edges connecting each (¢,2*) to (¢ + 1,2*). For a finite interval
I C 7 define V7(B) := Uie;V;(B) and let B N I denote the subgraph of B

induced by V;(B). Also define V/(B) 1= User {(s,Fs(m*)) :t < s <sup I} to
be the vertices of B obtained by simulating paths starting from z* within the
time window I, and let B M I denote the graph it induces in B. Two ways of
approximating B are then as follows:

(i) Restrict to [-n,0] and pick a uniform root in Vi_, o/(B).

(ii) Simulate paths starting from 2* in the window [—n,n|, which gives the
vertices of BT1[—n,n] C B, then pick a uniform root in V., (B).

After choosing a large viewing window I, a vertex picked at random will not
likely be near the edge of this window, so the effects of throwing away all but
this finite window can be controlled. However, the first method involves perfect
knowledge of some finite window of B. Practically speaking, when S is infinite,
one does not have a way to be sure that one has computed all of B in a finite
window, as the only tool available is to simulate sample paths starting from
different locations. This is the motivation for the second method of picking a
root. For, even if the edge effects caused by only viewing simulations of paths
in B from —n to n cannot be controlled, the edge effects from 0 to n can be
controlled using the information from simulating from —n to n. It will be shown
shortly that both of these methods enjoy convergence in the local weak sense to
the measure P,

27



Lemma 4.14. For any strictly increasing sequence of finite intervals (1), cy
in Z, and any function g € L*(PY), one has

1 oY o
#%E[MUE‘;B)Q[B’U]%E (9] (17)
and
1 _
L B, E%[g], 18
., 2, BBl (15)

where both convergences happen P-a.s. as n — co. In particular

#VIH(B) o #V[n(B)
E#V, (B)]  ZLE#B) - (19)

Proof. Assume without loss that Q = Z% is the canonical space and (6;), is the
family of shift operators defined by 0:((§s),cz) = (§t4s),cz- Both statements
follow from rewriting

Z g[E,’U]:Z <Z g[B,(t,x)]) :Z!JOO%

SEZ

vEVI, (B) tel, \z€B: tely
where go 1= > g, g[B, (0,z)]. The pointwise ergodic theorem for amenable
groups (cf. [17]) then proves the claim. O

Proposition 4.15. Fiz any strictly increasing sequence of finite intervals (I,),,
in Z, and for each n € N, let o, be, conditionally on Vi, (B), uniformly dis-

tributed on Vi, (B) and independent of BN, (including its marks). Then for all

bounded measurable g : G, — R>q depending only on vertices at some bounded

distance to the root, one has

1

——— >  gBnIL,v—Eg, P-as (20)
#V.(B) e
as n — o0o. In particular,
P(BnlI,,o0,) €)= P", n — 00 (21)

in the sense of local weak convergence.

Proof. Fix N € N and let ¢ : G, — R>( measurable, bounded, and such that g
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depends only on vertices at graph distance at most N from the root. One has

Elg [ N In, 0]
=E[E[g[BN1,,0,] | V1, (B)]]

1 _
- E|— BN,
#V1,(B) 1,6%]3)9[ N In, 0]
= _E#WAEU 1 =
E ( #V1,(B) E[#V], (B)] ve‘;(B)g[ N 1,

Call the two parenthesized expressions in the previous expectation a,, and b,
respectively, then it will be shown that a,b, — EP[g] a.s., from which it also
follows that E[a,b,] — E"[g] by dominated convergence. This will prove the
claims. By stationarity and linearity of expectation, for each n € N,

> g[B,v]

vEB(

1 | g L, OB
l9] = E[#B,] ~ ¥ | E#L B)] vewg;(B)g[B’ |

Call the inside of the last expectation ¢,. Letting [I', 0]y denote the neighbor-
hood of size N around o in a network I'; for all n > N

|b’n - cn|
1 = —
S 21 BB BN, v —g[B,
#IHE[#BO] 1)6‘%71:(3) |g[ " v} g[ ’U”
2l - B
< #IT[#BO]# {v eV, (B): [BNI,,v]y # [B7U]N}
_2fgllee “““i” B+ mZ .
SFLEgB, |, 2 FBet 2. #B

max [, —
~ 2llglls (
< E #Bi — E #Bk
#I E #BO kel, k=min I,+ N

= 2llgllo — 29l
=0

as n — oo, P-a.s., by Lemma 4.14. But also ¢, — E9[g] and a,, — 1, P-a.s.,
also by Lemma 4.14. Hence a,b, — E7[g], P-a.s., as claimed. O

Proposition 4.16. Fiz any increasing sequence of finite intervals (In,), ey =
([=an,bn]) ey i Z containing 0 with a, — oo and by, strictly increasing.
For each n € N, let o0;, be, conditionally on V; (B), uniformly distributed on
V[&bn](B) and independent of BM1I,, (including its marks). Then for all bounded
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measurable g : G, — R>o depending only on vertices at some bounded distance
to the root, one has

1 n O
: > gBnI,v - E°g, P-as (22)
#(V, (B) N[0, bn]) VeVl (BIN(0b]

In particular,
P(Bnl,,o,]€-) —P", n — 0o (23)
in the sense of local weak convergence.

Proof. Fix N € N and let g : G, — R>( measurable, bounded, and such that
g depends only on vertices at graph distance at most N from the root. The

finiteness of By implies that one has that [B M 1,,,v] = BN I,,v]y = B,v]y
eventually as n — oo for all v € V4(B), and hence for all v € Vi (B)N[0, b, — N]
eventually as n — oo as well. For the same reason V] (B) N [0,b,] = Vjgs,)(B)
eventually as n — oo as well. It follows that eventually

1
; Z g[B Il [nvv]
#(V,(B)N[0,ba]) vevy (B)N[0,bn]

L g[B m ny /U}
#V B B
[O;bn]( ) vE€V[0,b,,1(B)

1 B _
e S OB gB ),
[0,b,] VEVIh, —N+1,6,]1(B)

Of the last two terms, m ZUE%M](B) g[BN1I,,v] — E"[g] by Proposi-
tion 4.15, so it suffices to show that the last term goes to 0. Indeed,

1 B _
Foom X 6Bl gBnL.)
"on VEVh, —N+1,6,](B)

< 2lglloo #Vip, ~N+1,5,](B)

#Vj0,5,,)(B)
_ 2llglloc (#Vfo,b,) (B) = #Vjo,5,—n1(B))
B #V(0,,,1(B)
= 2[|gfloo(1 = 1)
=0
as desired. O

4.3.2. Renewal Structure of the Bridge Graph

In this section, the driving sequence £ is assumed to be i.i.d., i.e. G is Markovian.
One may ask whether the bridge graph B admits any kind of renewal structure.
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Is it possible that B; contains only one state? This is not necessarily possible.
Indeed, if p,, = 0, then B, contains at least two states for every t € Z. It
is true, though, that B; is infinitely often equal to any set that it has positive
probability of being equal to. Let Sg denote the possible configurations of
By, i.e. Sp :={ECS:P(By=FE)>0}. By Proposition 2.13, Sg consists
only of finite subsets of S and is therefore countable.

Lemma 4.17. For any subset E € Sg, the set of t for which By = E forms a
simple stationary point process ¥ g on Z with P(Vg(Z) = c0) = 1 and intensity
Ag = P(Bo = E). In particular, (Bt),c, is bi-recurrent for each E € Sg.

Proof. For E € Sg, the event that there is a ¢t such that B, = FE is shift-
invariant and has positive probability. Therefore it happens almost surely. The
set of such t is shift-covariant and therefore determines a simple stationary point
process W . The previous line implies that ¥ contains at least one point, and
therefore infinitely many a.s. One calculates Ap = E[¥g({0})] = E[l{g,—g}],
completing the proof. O

Moreover, ruling out obvious hurdles to B; being a singleton is sufficient.

Lemma 4.18. Suppose G is an EFT and has fully independent transitions.
Assume that pg« g+ > 0. Then {z*} € Sg.

Proof. By Proposition 2.13, #B; is a.s. finite for each ¢t € Z, and thus it is
possible to choose 1, ...,z, € S such that P(Bg = {x1,...,2,}) > 0. Since
G is an EFT, choose a tree T' C Z x S with leaves (0,z1),...,(0,z,) and root
(t,x*) for some ¢ > 0 such that P(T' C G) > 0. With [¢] := {0,...,¢}, let
I:={set]: 2* ¢ Ts}. Then

P(B; = {z*}) > P(By = {1,...,2,},T C G, F7 ) = 2" Vs € I)
> P(By = {z1,...,2,})P(T CG)P(FT) = 2" Vs € )
=P(Bo = {z1,...,2.})P(T C G)(paa)™’
> 0.

To justify the use of independence in the previous calculation, note that By
is (&5),.o-measurable, whereas the events {7 C G} and {Fs(if ) =% Vs € I}
are (fs)s2o—measurable, so the first is independent of the second two. Then

the second is independent of the third because, by construction, they involve
disjoint sets of edges in G. O

Now it is possible to see the renewal structure in B. Namely, (B;),. is itself
an irreducible, aperiodic, and positive recurrent Markov chain under certain
conditions.

Proposition 4.19. One has that (By),., is a Markov chain on Sg. Addition-
ally, (Bt),cy is stationary and bi-recurrent for every E € Sp. Its transition
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matriz Pg is irreducible and positive recurrent. If G is an EFT with fully in-
dependent transitions and py« 5= > 0, then {z*} € Sg and Pg({z*},{z*}) >0
so Pg is aperiodic as well.

Proof. By Proposition 2.13, #B; is a.s. finite for each ¢ € Z. Moreover,
Bit1 = {z*} U {Ft(j_’f) (Y € Bt}, so indeed (Bi),., is a Markov chain on the
finite subsets of S since, for each t € Z, B4 is a function of By and &. Here
the running assumption that & is i.i.d. is used. By Lemma 4.17, (B;),,, is bi-
recurrent for every state £ C S such that P(By = E) > 0. In particular, the
chain must be irreducible on Sg, else a return to some state E; could not occur
after a return to another state E5 for some E;, F5 that do not communicate.
Since (B4),, is shift-covariant it is stationary. The existence of a positive sta-
tionary distribution (the law of By) for the irreducible Pg implies Pg is positive
recurrent. If G is an EFT with fully independent transitions, then Lemma 4.18
shows that {#*} € Sp. Then py« ,+ > 0 implies Pg({z*},{z*}) > 0 as well, so
Pp is also aperiodic in that case. O

It is possible that the Sg is strictly smaller than the set of all finite subsets
of S containing z*.

Example 4.20. Consider S := {0,1,2} and z* := 0 with po o = po,1 = po2 = %

and p1o = p2,0 = 1. That is, from 0 make a uniform choice of where to jump,
and from 1 and 2 deterministically return to 0. Fix ¢ € Z. In this case, if 1 € By,
it must be that Ft(tfl’o) = 1. Similarly, if 2 € By, it must be that Ft(tfl’o) =2.
Thus it cannot be that both 1,2 € By, and hence {0,1,2} ¢ Sp.

However, if every state has a chance to be lazy, then Sg does turn out to be
the set of all finite subsets of S containing x.

Proposition 4.21. Suppose G has fully independent transitions, P is irre-
ducible, and py, > 0 for all y € S. Then (By),c, is an irreducible, aperiodic,
positive recurrent, and stationary Markov chain on the set of all finite subsets
of S containing x*.

Proof. The assumptions imply that, in fact, P is irreducible, aperiodic, and
positive recurrent (since z* is always assumed positive recurrent), so Proposi-
tion 4.19 implies that the only item left to show is that Sg contains all finite
subsets of S containing z*. Let a finite set E containing x* be given. Call
(Y1, -..,yn) with each y; € S a possible path if H;:ll Py yis1 > 0. For the rest
of the proof, all paths considered are possible paths. One would like to simply
draw a path from z* to each y € S where after a path reaches its destination
it becomes constant while it waits for the other paths to finish. This approach
is slightly flawed because it may be that, for instance, every path from z* to
z passes through y. In this case, one must draw the path from z* to y before
the path from z* to z, otherwise the resulting graph would have a vertex with
multiple outgoing edges, which is an impossibility in G. However, the approach
will work as long as it is possible to draw the paths in an order such that no
interference occurs.

32



An example bridge graph containing I'
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Figure 4: The graph T' from the proof of Proposition 4.21 when S = Z/15Z,
x* =0,and E = {0,2,5,8,12}, where the Markov dynamics are the lazy version
of the deterministic cycle z — x4+ 1 on S. The graph I' is constructed so that,
as shown in the figure, if By = {0} and I" C G, then Bo7 = {0,2,5,8,12}.

Define a partial order < on E by saying y < z if all paths from x* to z pass
through y with the convention that the trivial path (z*) does not pass through
x* (to prohibit z* <y x*). Since F is finite, there is a <g-maximal element
zg € E. That is, for all y € F there is a path from z* to y that does not hit .
Choose a path Ly from z* to x¢. With <,,, zg,...,x,, and Ly,..., L, defined,
as long as F \ {zg,...,z,} # 0, recursively define <,,11, Tpy1, and L,1q as
follows. By construction, for all y € E \ {zo,...,x,}, there is a path from z*
to y that avoids zg,...,z,. Define <,41 on E\ {zo,...,z,} by saying y < z
if all paths from z* to z avoiding xg, . .., x, pass through y. Then it is possible
to choose a <,41-maximal element z,41, i.e. for all y € E\ {zo,...,Tnt1},
there is a path from z* to y that does not pass through any of xg,...,zn41.
Also choose L, 1 a path from z* to x,,41 avoiding zg,...,xz,. Necessarily the
recursion terminates when n = #FE — 1. It is now possible to construct a graph
' CZx S with P(By = {z*},T CG) > 0and when I' C G and By = {z*},
one has B; = FE for some t. Let t; be the sum of the lengths of the paths
Lo,...,L;—1 for each 0 < i < #E, with tg := 0. Let I' be the graph that for
each 7 has:

(i) a path from (¢;, x) to (t;41,x;) with state path L; from time ¢; to t;41,

(ii) a path started at (¢;41,;) that stays constant at x; until time t4p, and
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(iii) a (possibly trivial) path started at (¢; + 1,z) that stays constant at z*
until time #;44.

Note that, by construction, I' is a finite graph that is the union of edges that
occur with positive probability. Moreover, the connected components of ' are
formed from points items (i) and (ii) for some 4 and item (iii) from i — 1.
Whenever I' C G and By = {z*}, one has B;,, = E. This occurs with positive
probability since p,, > 0 for all y € S. O

Proposition 4.22. Suppose G has fully independent transitions. Fxtend the
definition of Pg to

Pg(E,E'):=P ({x*} U {F{O’y) Ly E} - E’) , (24)

for all finite E, E' C S containing x*. Then Pg satisfies the following recur-
rence: for B ={x*,x1,...,2,} and E' = {x*,y1,.. ., Ym},

m

PB(EvE/) = <pwn7w* + prn,yz) PB(E \ {xn} ) E/)

+ men,.% (E\ {2}, B\ {vi}), (25)

with recursive depth at most n and base cases

Pg(E,E') =0, #E >#E+1
PB({x*} {x*>y}) =Prry, YE S (26)
Ps(E, {x }) HyeEpU)

Proof. First one justifies the extension of the definition of Pg by noting that
for E, E' € Sg one has

Pg(E,E')

P(B, = F' | By = E)
(=
(
(

{Ffo’” ye Bo} — E'|By=E)

P({z"} U
P({z }U{F(Oy) yeE}:E’\BO:E)
p

{x}U{F(O’y) yeE} E),

where the last equality follows from the fact that By is measurable with re-

spect to (&¢),.y, whereas Fl(o’y) is &-measurable for each y € S. The base
cases for Pg are immediate from the definition of Pg and the independence
structure. To see the recurrence, suppose E = {a* zy,...,2,} and E' =

{x*,y1,...,ym} as above. Split Pg(F, E’) depending on the value of Fl(o’x") =
x* or Fl(o’x") = y;, and on whether {z*} U {Fl(o’y) ry € BN\ {:vn}} = E’ still or
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U {F sy e B\{on}} = B\ (i},

Pp(E,E') =P (Fl(o’r") =z* {z*} U {Fl(o’y) cy € B\ {mn}} S E’)

+ ZP (Fl(o’x”) =y, {z*}U {Fl(o’y) ry e BN\ {xn}} = E’)
i=1

m
O,CE" k 0,
3P =y fa U {F sy € B\ {wn}} = B\ {w})
i=1
which, since G has fully independent transitions, equals
[ ({x*} U {Fl(o’y) cy € EN\ {xn}} = E’)

+ipzn,yip ({x*} U {Fl(o’y) cy € BN\ {xn}} = E’)

+ip%,yiP (fay U {F g e B\ {2} } = B'\ {ui})

which simplifies to

<p + 2p> Pa(E\ {2} E) + Y poy Pe(E\ {2} B\ {ui)),

=1 i=1

showing the recurrence holds.
Finally, the recursive depth needed to fully compute Pg(FE, E’) is at most n
because each application of the recurrence removes an element from E. O

Example 4.23. By implementing the recurrence of Proposition 4.22 in, e.g.
Python, one may compute Pg explicitly. Then, given values for the p, ,, one
may compute the staitonary distribution mg of Pg. For example, with S :=
{0,1,2} and 2* := 0, and p, , = % for all z,y € S, one has

7TB:[WB({O}) m({0,1}) 7m8({0,2}) 7s({0,1,2})

— |17 45 45 36
143 143 143 143

It is an open question whether, in the fully independent transitions case,
there is a general closed form expression for Pg in terms of P or for the station-
ary distribution 7g of Pg in terms of P and 7.

5. Bibliographical Comments

While this work may be the first time the Doeblin graph G has been explicitly
defined and studied in its own right, it is without doubt that most, if not all,
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who have worked on CEFTP-related research have had this picture in mind.
Rather, the novelty here lies in the consideration of the bridge graph B. While,
to the best of the authors’ knowledge, the bridge graph B has not previously
been defined or studied, it is not without ties to other objects that have been
previously studied.

The first occurrence of some form of the bridge graph appears in [6], where
Borovkov and Foss consider a family of stochastically recursive sequences started
at times 0,—1,—2,..., all with the same initial condition, and they proved
the existence (under suitable conditions) of a stationary version of the SRS.
They defined three notions of coupling convergence and studied when coupling
convergence to the stationary SRS occurs. Their notion of strong coupling
convergence to the stationary SRS is akin to the condition that B is an EFT.
That is, it is the condition that all paths in B eventually merge. It is conceivable
that, in the EFT case, one could derive the existence of the bi-infinite path in B
from the work in [6], though it is not clear whether Borovkov and Foss had this
in mind, and they did not make any mention of the key bi-recurrence property
used in the current paper to distinguish this bi-infinite path from the potential
others in G.

Another occurrence of a similar object to the bridge graph may be found
in [3] in the very special case of integer-valued renewal processes. The dynamics
there are slightly different, where instead of specifying a whole process started
from each time, one marks each time with the time of death of an individual
who is born at that time. This is akin to marking each ¢ € Z by the return time
7527 (%) of F(H®7) to x*, though in [3] these times of death are assumed to
be i.i.d., whereas in the present work they have intricate dependence due to the
Doeblin-type coupling. The population process defined in [3] is then similar in
nature to the sequence of cardinalities of (B;),., as considered in Section 4.3.2.
It is proved in [3] that, under natural conditions, the population process is a sta-
tionary regenerative process with independent cycles. In the present work, the
process (Bt),c, was shown in Proposition 4.19 to be an irreducible, aperiodic,
and positive recurrent Markov chain under suitable conditions, which therefore
also admits an i.i.d. cycle decomposition. The analysis of this special case and,
in particular, the identification of the I/F structure of the components has been
kept in mind throughout the development of the theory of Doeblin EFFs.

6. Appendix

6.1. Postponed Proofs

Proofs that were only sketched in the main text are collected in full detail here.

Proof of Theorem 2.2. For each t € Z, let p; be the distribution of X;. It is
enough to show the existence of (', F/,P’) on which there is a process X’ :=
(X{);cz and some iid. & := (£}),., such that

(i) X, ~ s for all ¢ € Z,
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(i) & ~ & for all t € Z,
(iii) X7 is independent of (&), for all ¢ € Z, and
(iv) X[, 1 = hgen(Xy,&;) for all t € Z.

Items (i) to (iv) and Lemma 2.1 will imply the result. Note that items (i) to (iv)
are sufficient to characterize the joint finite dimensional distributions of (X7),.,
and (§;);cz- To see this fix to < #1. The joint distribution of (X), <1<,
and (&§}); <i<¢, i determined because, conditional on (&), <;«;,» X, is still
distributed as fi;, by items (i) and (iii), and, conditional on both Xj and
(§)to<t<t,» one has that (X[), <<, is deterministic by item (iv). Thus it
suffices to show that (X7),., and (§}),., satisfying items (i) to (iv) exist. Also
note that items (i) to (iv) with ¢y < ¢ < t; are sufficient for determining the
joint distribution of (X(), <.<; and (§5); <o<s,

The proof will proceed by the Kolmogorov extension theorem. Suppose, by
extending (€, F,P) if necessary, that (X;),., and ¢ are defined on the same
space and are independent of each other. Consider for each ¢t € Z, the state
path F(:Xt) in G started at (t, Xt). Then for all s,t € Z with s < ¢ and all
x €S,

P(F) =2) = Y P(X, =y, F"™) =)
yeSs
=> ()P (y, )
yeS
= UsPt_s(x)7

where in the previous line P is treated as a transition kernel with powers P*
(k =0,1,2,...). Since (X¢),c; exists and is a Markov chain with transition
matrix P, one has

,usPtfs — 'uTPsfrptfs — /JJTPtfr =y (27)

for all » < s < t. Moreover, for all s < t, Ft(S’XS) is (X, (E) yaprcr)-
measurable, hence it is independent of (Et')t’2t' Now fix sg,to,t1 € Z with
so < tp < t1 and consider the joint distribution of (Ft(S“’Xso))
(ft)togtgtl- One has F(*0:%Xs0) and & satisty

to<t<t; and

(i) F00) oy, for all tg < t < 1,
(ii’) £ ~¢,
(iii") F"** is independent of (&), for all fo < t < t1, and

(iv) FUS0) = haen (F0) &) for all £y < t.
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As mentioned before, items (i’) to (iv’) are sufficient to determine the joint
distribution of (Ft(SO’XSO))tO@@1 and (&),,<;<;,» S0 the joint distribution of

(Ft(SO’XSO))tO<t<1t1 and (&), <i<¢, does not depend on so as long as sp < to.
Thus a consistent set of finite dimensional distributions is determined by taking
s0,tg — —oo and t; — oo while maintaining sg < tg < t1. It follows by the
Kolmogorov extension theorem that there is a space (', F',P’) and processes
X' = (X{)jez and & = (&), satisfying items (i) to (iv), completing the
proof. U

Call P strongly recurrent if all its recurrent classes are positive recurrent
and call P recurrent-attracting if any Markov chain with transition matrix
P eventually enters a recurrent state. These conditions are both automatic if
P is irreducible and positive recurrent.

Proposition 6.1 (Subsumes Proposition 2.3). Let S = T U |J (Ri)0<i<N de-
compose S into its transient states and N € NU {oo} recurrent communication
classes for P. Assume that P is strongly recurrent and recurrent-attracting. Let
d(i) be the period of R*, and let R* = C{U- - -UC’ZQ(i)f1 be a cyclic decomposition.
If G has fully independent transitions, then the components

: (C;’)ogi<N,0<j<d(i)
of G are in bijection with (C;)O<i<N,0<j<d(i)’ and for x € Cj, (t,x) € V(C})
if and only if j —t = j' (mod d(2)), and for x € T, (t,x) € V(C;) where
(t'y) € V(C;) is any vertex on the path of (t,x) for which y is recurrent. That
is, C; is the set of all vertices of all paths in G that pass through an element of

C% at any time t =0 (mod d(i)).

Proof. Fix i,j,t and let x,y € Ci. Then P restricted to C4 is irreducible,
aperiodic, and positive recurrent. Thus the product chain P%%) @ P4%) re-
stricted to C’;ﬁ X C; is too. Strictly before the hitting time to the diagonal,

(Ft(i:;(i)’ t(j—’gi(i))@o is distributed the same as the product chain P%% @ P(*)

on C]’: X C} and thus the hitting time to the diagonal is a.s. finite because the
product chain is irreducible, aperiodic, and positive recurrent. It follows that
(t,z) and of (¢,y) are in the same component of G. If z € C} and y € C;i
with ¢ # 4, then F(®?*) and F®¥) cannot merge because the states of F(*:®)
are contained in R’ and the states of F(%) is contained in RY. If z € C’; and
y € CJZ:, with j/ # j (mod d(i)), then F*#) and F®¥) cannot merge because
Ft(i:) e Ci,, but Ft(i;’) € CJ’:,JFS with indices taken modulo d(i) as necessary.
Thus, the set of y € S\ T such that F(**) eventually merges with F(*¥) is
precisely C}. If x € Cj,y € C’;: and t < t/, then Ft(,t’w) € C’;+(t,7t),
that F(&%) and F(%) eventually merge if and only if i’ =i and j+ (¢ —t) = 5/
(mod d(7)), or equivalently j' —t' = j —t (mod d(i)). It follows that for any
z,y € S\ T and any t,t' € Z, the two vertices (¢,z), (t',y) € V(G) are in the
same component of G if and only if there are ¢, 7, j such that = € C;,y € Cj/

and j' —t' = j —t (mod d(i)). If z € C}, then F{"") € Ci_,  for all s > t.

so it follows
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Thus F{") ¢ Ci_, for all s = 0 (mod d(i)) with s > ¢. Call Cj_, the time-
zero class of (t,z). Then for = € C’;,y € C';, and t,t’ € Z, the condition that
j =t =j—t (mod d(2)) is equivalent to the fact that (¢, z) and (¢, y) have the
same time-zero class. Thus the components of G are exactly the equivalence
classes of vertices in the same time-zero class, except possibly ignoring (¢, ) for
transient z. By the assumption that P is recurrent-attracting, if € T, then
F(2) eventually hits some recurrent class and so does not form a new compo-
nent of G, and the path F(**) is in the component of the first (and every) (¢, y)
it hits with y recurrent. O

Proof of Lemma 3.3. Fix k € N. For every v € V = Z x S, the event that
v € V(T') and dr(o,v) < k is measurable. Indeed, there are at most countably
many paths (vg,v1,v2,...,v,) in V with n < k, and the desired event is the
union over all such paths of any length n < k ending at v of the event

n

{o=wo} N[ {fv(vi) =1} n{fe(vim1,v;) = 1}).

=1

From here one sees that event that the r-neighborhood around o is exactly some
fixed finite graph I' is measurable. Indeed,

{Nr(o,7) =T} = ﬂ {(fv(v) =1and dr(o,v) <r) <= veV(I)}.
veV

Enhancing I with marks &,,§, . for each v € V(T') and all {v,w} € E(T), for
any € > 0 and o € V(T'), one sees that the event

D, .(T,0) :={o=o,
Nr(o,r) =T,
Vu € V(T),dz,,., (§v(u),&u) <6,
v {U’ w} € E(F)a dEumv (§E (Ua w): fv,w) < 6}

is measurable. Since V is countable and I' is a finite graph, there are at most
countably many rooted isomorphic copies of (T',0) that can be made with ver-
tices in V. It follows that the event {dg, ([T, o], [T, 0]) < €} is a countable union
of the events D17 ((p(I', 0)) with p ranging over the countable collection of such
rooted isomorphisms of (T, 0). Hence w ~— [I'(w), o(w)] is measurable. O

Proof of Proposition 3.4. First suppose that X is independent of G and uni-
formly distributed on a finite S. Let N be the cardinality of S. Let g : G. —
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R3¢ supported on directed neighbors be given. Then

E Y g[G,(0.Xo), NZEZg ,(1,9)]

veV(G) zeS yeS

~ Z ), (1,9)]]

z,y€S

:% Z E[g[G, (-1,7),(0,y)]]

z,y€S

fZEZg x), (0, 9)]

yesS zeS

=E ) g[G,v,(0,Xo)],

veV(G)

where in the third equality time-homogeneity of G is used. It follows that in
this case G is unimodular.

Next suppose [G, (0, Xp)] is unimodular. Let 7 be a vertex-shift that follows
the arrows in G. For example, define for each network I' and v € V(TI') the
vertex-shift by nr(u) := v if there is a unique outgoing edge from w and this
edge terminates at v, or nr(u) := w if this condition is not met for any v. Since
G is connected, its 7-foils are (G¢),.,. Let the mark of a vertex v be denoted
(s(v),&(v)), and let v ~ w denote that v and w are in the same n-foil. Fix
r,y € S and let g[G,v,w] := l{s(v)=a,s(w)=y,o~w}- Lhen the mass transport
principle implies

P(Xo=x)=E Y 4[G,(0,Xo),0]=E Y ¢[G,v,(0,X0)] =P(Xo =1y),
vEV(G) veV(G)

so Xg is uniformly distributed on S.

Next let Xy be the output of the CFTP algorithm in the standard CFTP
setup. Suppose [G, (0, Xo)] is unimodular. Since (0, X) has one outgoing edge
in G, unimodularity implies that on average it has one incoming edge. But,
being the output of the CFTP algorithm, (0, X() a.s. has at least one incoming
edge. Hence (0, X() a.s. has exactly one incoming edge. By unimodularity, it
follows that a.s. every vertex in G has exactly one incoming edge. Since G is
a tree, this is only possibly if S has a single element. If S has only a single
element unimodularity is immediate. O

6.2. List of Mass Transports

As mentioned in Section 2.5, the proof style of Proposition 2.13 can be used to
prove many equalities and inequalities in mean. A list is provided giving mass
transports, followed by the results they give after applying the boilerplate proof
style with these mass transports. Drawing a picture for each transport helps
significantly in computing w* and w™ for the given transports. In all of the
following, g is the union of all bi-recurrent paths in B.
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(i)

(iii)

(iv)

Send mass 1 from each s to all times ¢ strictly after s and strictly before
F(:%7) returns to x*.

E[#Bo] < E[¢c(®*7)(z*)], where ¢(®*")(2*) is the time until return of
FO=7) o o*,

Fix y € S. For each s, if y € B, send mass 1 to the first time ¢ > s that
F¥) hits x*.

P(y € By) = E[#R(0)¥], where R(0) C B is the subgraph of vertices that
first return to z* at time 0, i.e., the (possibly empty) subgraph of B of all
(t,y) € V(B) such that 7(-%) (z*) = 0, where 7(:%)(2*) is the return time
of F(b¥) to z*.

Summing over y € S, one finds E[#V(R(0))] = E[#Byg).

Send mass 1 from each s to the first time ¢ > s that F{*" ) = Ft(sl’x*) for
some s’ > t.

E[C(0)] = 1, where C(0) is the total number of paths F(*®") that merge
with a younger F(*®") (i.e. with s’ > s) for the first time at time 0.
P(#B1 < #Bo— k) <P(C(1) 2 k+1) < 15 forall k e N.

Fix y € S. For each s, send mass 1 to each time ¢ that Ft(s’x*) =y and
t is strictly before F (s,27) merges with the unique bi-recurrent path in its
component of B.

E[Ny"" (4y: )] = ElLyeo\po #V* (DO¥ NV (B))], where N (y; 5)
denotes the number of visits (potentially 0) of F(®*") to y strictly before
merging with 3.

Summing over y € S, E[o{"")(8)] = E[#V*" (D"B\%(®) 0 V(B))],
where Uéo’m )(6) is the number of steps (potentially 0) before F(0:*")

merges with 3, and DVoBN\Vo(8) ig the set of all descendants of all v €
Vo(B) \ Vo(B).

Fix y € S. For each s, if y € B, send mass 1 to the first time ¢ that F(5:)
is on the bi-recurrent path in its component of B.

P(y € By) = E[#VY(DYWEM 0 V(B))], where DVo8:M denotes the
union of V5(B3) with their mortal descendants, i.e. those descendants
with only finitely many descendants and whose first ancestor in § is at
time 0.

Summing over y € S, one finds E[#Bg] = E[#(D" )M nV(B))].

Fix y € S and suppose G is an EFT and (5;),. is the bi-recurrent path
in G. For each ¢, if 5; = y send mass 1 backwards to the most recent time
s < t such that 8, = x*.
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o E[NO=) (y: 2*)1g,=0+] = P(Bo = y), where N (y;2*) denotes the
number of visits of F(%*7) to y before returning to z*, including the initial
visit if y = a*.

e Summing over y € S, one finds E[o(®*) (z*)1(5,_,}] = 1.

e If G is also Markovian, then the previous points reduce to the classical
cycle formulas, E[N (%) (y: 2*)|r(2*) = n(y) and E[o(®*") (z*)]n(x) = 1,
where 7 is the stationary distribution of the Markov chain.

Instead of using the unimodularity of Z and specifying a mass transport
w = w(s,t) for s,t € Z, one may also use the unimodular version of B (that
is, the random network with distribution PY) and specify a mass transport
w = w[l, u,v] for all networks I" and all u,v € V(I"). Some mass transports are
much easier to write in this way. For example, the mass transport in item (iii)
above also follows from the mass transport w[[',u,v] = 1 if v is the unique
out-neighbor of w in I'. However, strictly speaking, there are no results using a
mass transport on B that could not also be proved with a mass transport on

Z. Indeed, if w is a mass transport defined for all networks T, then with [B, O]
denoting the identity map under PS,

E” Z w[B,0,v]| = EF Z w[B, v,
veV (B) veV(B)

may be rewritten as

1 ) o .
B |2 Y00 | = BBy | 2 00

teZ i teZ

where

w(s,t) := Z Z w[B, u,v], s,t €7

ueVs(B) veVy(B)

is a mass transport on Z. That being said, the reader is encouraged the ponder
the sequence of mass transports on Z that would be required to prove a result
like the classification theorem, Theorem 3.1, for the network [B, 0] directly. It
seems more elegant to call upon the machinery of unimodular networks when

convenient instead.
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