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Sampling Stationary Distributions
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I Finite state space S .

I Transition matrix P: irreducible, aperiodic, positive recurrent.

I Stationary distribution π.
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Naive Method

How to get a sample from π?

I Run MC for a very long time, return the result.

Problems:

I How long is “very long”?
1 hundred steps?
1 million steps?
1 billion steps?

I How good is sample?

Can answer if mixing time is known, but often it is not.
Can we do better?
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Coupling From the Past
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I Imagine starting a copy of the MC from every possible state
at every possible time.
When two paths meet, they merge.

I Model this with a random graph on Z× S .
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I Every time t gets gets an independent source of randomness
ξt to determine transitions to the next time.

I Fully independent case: ξt has a product distribution, i.e.
ξt = (ξt,x)x so every vertex (t, x) gets an independent source
of randomness ξt,x .



Coupling From the Past

Specifically, transitions are determined by

(t, x) 7→ (t + 1, h(x , ξt))

where h is chosen to satisfy

P(h(x , ξ0) = y) = P(x , y), x , y ∈ S .



Coupling From the Past

Algorithm:

1. Simulate MC starting from all states at a given time t < 0.

2. Check if, at time 0, all states end up in the same place.

3. If so, return this value.

4. If not, start again twice as far back in time.
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Coupling From the Past

I CFTP returns a value β0 ∼ π.
If the sim finished, it is a perfect sample.
Could still take a long time.

I As described, requires space at least as big as number of
states, but (anti)monotonicity can be used for some models to
reduce space usage significantly.

I Huge effort spent to specialize CFTP to specific chains makes
it good choice in many cases.
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Taking a step back

But why is this β0 a sample from π?



Taking a step back

From time -120 to 0, all states collapsed to a single state.
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IID structure in time implies this kind of collapse will happen
infinitely often backwards in time.

Gives bi-infinite path (βt)t∈Z which is stationary version of
the chain. CFTP returns β0.
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Doeblin Graphs

I Keep the same picture as CFTP, but study the graph itself.

I State space S allowed to be countably infinite.

I (ξt)t allowed to be stationary ergodic instead of IID, but for
this talk assume IID.

I P still irreducible, aperiodic, positive recurrent.

Main question:
What properties does this Doeblin Graph have?
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Doeblin Graphs

Unique bi-infinite path?

No. Fall to 0 then Geom(1/2) jumps.
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Doeblin Graphs

However, one bi-infinite path here is not like the others.
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Bi-recurrence

Definition
A sequence (xt)t in S is called bi-recurrent if {t : xt = x} is
unbounded above and below for all x ∈ S . A random process
(Xt)t∈Z in S is called bi-recurrent if a.s. its trajectory is
bi-recurrent.

In the previous example, we saw the picture had a unique
bi-recurrent path (βt)t .
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Bi-recurrence

Existence of a unique bi-infinite path in a tree is a consequence of
a familiar theorem of random networks, the cardinality
classification theorem of vertex-shifts in unimodular networks.



Random Networks

Network Γ ≈ nonempty, locally finite, connected graph with
vertices and edges marked.

Random network [Γ, o] ≈ random element in space of rooted
networks up to isomorphism.
Unimodular network ≈ random network with root picked
“uniformly” (satisfies a mass transport principle).
I.e. for all measurable g ≥ 0

E
∑

v∈V (Γ)

g [Γ, o, v ] = E
∑

v∈V (Γ)

g [Γ, v , o].

Vertex-shift Φ ≈ for each network Γ, ΦΓ is a map from vertices to
vertices. Must commute with isomorphisms. Not a random object,
it is defined for all networks.
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Doebin Graph as a Unimodular Network?

Finite case: OK, independent of the graph, choose root uniformly
from states at time 0.
Unsatisfying and doesn’t extend to infinite state space.

Some hurdles in infinite case:

1. Local finiteness? Can’t fix.

2. More than one bi-infinite path? Can’t fix.
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Bridge Graph

Fix state x∗ (=0 in the picture).

Definition
The bridge graph B for state x∗ is the subgraph induced by all
paths started in state x∗.
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Bridge Graph

Let Bt denote the vertical slice of B sitting at time t.
Let M <∞ be the mean return time of a path started in state x∗

to return to x∗.

Proposition

For all t ∈ Z, E[#Bt ] ≤ M. In particular, the bridge graph is
locally finite even if the Doeblin graph is not.



Bridge Graph

Consider vertices (t, y) in bridge graph marked by (y , ξt).
Assume B is connected for the rest of the talk.

Theorem
Any random network with distribution

P�(A) :=
1

E[#B0]
E

 ∑
(0,y)∈V (B)

1 {[B, (0, y)] ∈ A}


is unimodular.

Note: P� is a size-biased version of original network.



Bridge Graph

A subset A of rooted networks is root-invariant if for all [Γ, o] ∈ A
one has [Γ, v ] ∈ A for all v ∈ V (Γ).

Lemma
P� and P([B, (0, x∗)] ∈ ·) have the same root-invariant sets of
measure 0 or 1.



Consequences of Unimodularity

I “Follow the arrows” defines a vertex-shift, and applied to B
this vertex-shift draws B.

I Can now reap benefits of unimodularity of P�.

Proposition

B has an a.s. unique bi-infinite path (βt)t . This path is
bi-recurrent. This is the only bi-recurrent path in all of the larger
Doeblin graph. The path is shift-covariant, stationary, and for each
t, βt is measurable with respect to σ(ξs : s < t). Moreover, (βt)t
is a Markov chain with transition matrix P.

Note that since (βt)t is the only bi-recurrent path in the whole
Doeblin graph, it does not depend on the state x∗ used to generate
B. Using another x∗ would give a different bridge graph that has
the same bi-recurrent path.
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Consequences of Unimodularity

Recall that P is assumed irreducible, aperiodic, and positive
recurrent.
The following is a consequence of the fact that any Markov chain
can be embedded as a path in a Doeblin graph.

Theorem
Suppose (Xt)t∈Z is a Markov chain with transition matrix P. Then
(Xt)t is stationary if and only if it is bi-recurrent. Note that time
index set is Z, not N.



Other bi-infinite paths

We saw that in some cases (finite state space) there appears to be
a unique bi-infinite path, not just bi-recurrent path, but in other
cases there were infinitely many bi-infinite paths.

Definition
Call a bi-infinite path that is not bi-recurrent spurious.

Definition
Say Pn → π uniformly if supx∈S ||Pn(x , ·)− π||TV → 0 as
n→∞. (Some sources say P is uniformly ergodic.)
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Other bi-infinite paths

Proposition

In fully IID case, if Pn → π uniformly, then the Doeblin graph
contains no spurious bi-infinite paths.

Proposition

Suppose Pn → π uniformly, then every Markov chain (Xt)t∈Z with
transition matrix P is stationary and bi-recurrent. The subtle
assumption again is that the chain is indexed by Z, not N.

The previous result is a partial converse to the well known result
that stationary sequence indexed on N can be extended to Z.
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Other bridge graphs

What about bridge graphs generated using a different x∗?.

Proposition

In the fully IID case, if S is infinite, and if the Doeblin graph is
locally finite and contains no spurious bi-infinite paths, then the
intersection of all bridge graphs using different values of x∗ is
exactly the bi-recurrent path.

On the other hand, if S is finite and has ≥ 2 states, then there is
a.s. more.



Things left out

In the arxiv paper “Doeblin Trees”, you may also find results on:

I Local weak convergence to bridge graph by finite networks.

I Vertical slices of bridge graph are themselves a Markov chain
with recurrence known to compute its transition matrix.

I Many mass transport relationships amongst objects discussed.

I Non Markov case and no need for connectedness (irreducible,
aperiodic) assumption.



References

[1] Baccelli, F., Haji-Mirsadeghi, M.-O., and Murphy. J.:
Doeblin Trees (2018). arXiv preprint.

[2] Propp, J. and Wilson D.: Exact sampling with coupled
Markov chains and applications to statistical mechanics
(1996).

[3] Stochastically recursive sequences and their
generalizations (1992).

[4] Foss, S. and Tweedie R.: Perfect simulation and
backwards coupling (1998).


