Doeblin Trees

James Murphy

Joint work with: François Baccelli and Mir-Omid Haji-Mirsadeghi

February 13, 2019

Sampling Stationary Distributions

Interested in a Markov chain:

- Finite state space *S*.
- Transition matrix P: irreducible, aperiodic, positive recurrent.
- ▶ Stationary distribution π .

Sampling Stationary Distributions

Interested in a Markov chain:

- ► Finite state space *S*.
- Transition matrix P: irreducible, aperiodic, positive recurrent.
- ▶ Stationary distribution π .

How to get a sample from π ?

Naive Method

How to get a sample from π ?

▶ Run MC for a very long time, return the result.

Naive Method

How to get a sample from π ?

▶ Run MC for a very long time, return the result.

Problems:

- ► How long is "very long"?
 - 1 hundred steps?
 - 1 million steps?
 - 1 billion steps?
- How good is sample?

Naive Method

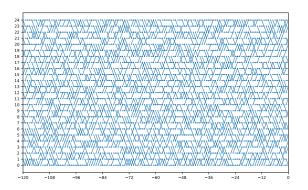
How to get a sample from π ?

Run MC for a very long time, return the result.

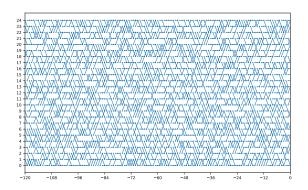
Problems:

- ► How long is "very long"?
 - 1 hundred steps?
 - 1 million steps?
 - 1 billion steps?
- How good is sample?

Can answer if mixing time is known, but often it is not. Can we do better?



- Imagine starting a copy of the MC from every possible state at every possible time.
 When two paths meet, they merge.
- ▶ Model this with a random graph on $\mathbb{Z} \times S$.



- Every time t gets gets an independent source of randomness ξ_t to determine transitions to the next time.
- ▶ Fully independent case: ξ_t has a product distribution, i.e. $\xi_t = (\xi_{t,x})_x$ so every vertex (t,x) gets an independent source of randomness $\xi_{t,x}$.

Specifically, transitions are determined by

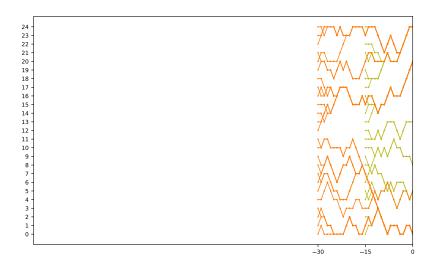
$$(t,x)\mapsto (t+1,h(x,\xi_t))$$

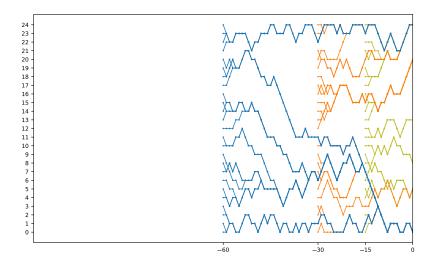
where h is chosen to satisfy

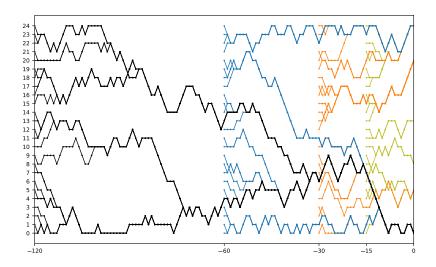
$$\mathbb{P}(h(x,\xi_0)=y)=P(x,y), \qquad x,y\in S.$$

Algorithm:

- 1. Simulate MC starting from all states at a given time t < 0.
- 2. Check if, at time 0, all states end up in the same place.
- 3. If so, return this value.
- 4. If not, start again twice as far back in time.







► CFTP returns a value $\beta_0 \sim \pi$. If the sim finished, it is a perfect sample. Could still take a long time.

- ► CFTP returns a value $\beta_0 \sim \pi$. If the sim finished, it is a perfect sample. Could still take a long time.
- As described, requires space at least as big as number of states, but (anti)monotonicity can be used for some models to reduce space usage significantly.

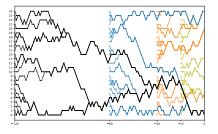
- ► CFTP returns a value $\beta_0 \sim \pi$. If the sim finished, it is a perfect sample. Could still take a long time.
- As described, requires space at least as big as number of states, but (anti)monotonicity can be used for some models to reduce space usage significantly.
- ► Huge effort spent to specialize CFTP to specific chains makes it good choice in many cases.

Taking a step back

But why is this β_0 a sample from π ?

Taking a step back

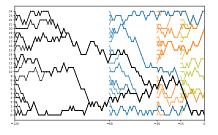
From time -120 to 0, all states collapsed to a single state.



IID structure in time implies this kind of collapse will happen infinitely often backwards in time.

Taking a step back

From time -120 to 0, all states collapsed to a single state.



IID structure in time implies this kind of collapse will happen infinitely often backwards in time.

Gives bi-infinite path $(\beta_t)_{t\in\mathbb{Z}}$ which is stationary version of the chain. CFTP returns β_0 .

- Keep the same picture as CFTP, but study the graph itself.
- ► State space *S* allowed to be countably infinite.
- $(\xi_t)_t$ allowed to be stationary ergodic instead of IID, but for this talk assume IID.
- P still irreducible, aperiodic, positive recurrent.

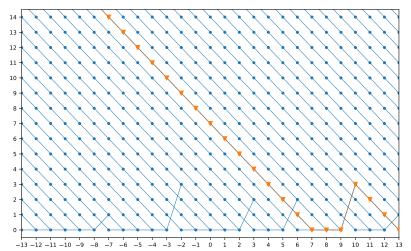
- Keep the same picture as CFTP, but study the graph itself.
- ► State space *S* allowed to be countably infinite.
- $(\xi_t)_t$ allowed to be stationary ergodic instead of IID, but for this talk assume IID.
- P still irreducible, aperiodic, positive recurrent.

Main question:

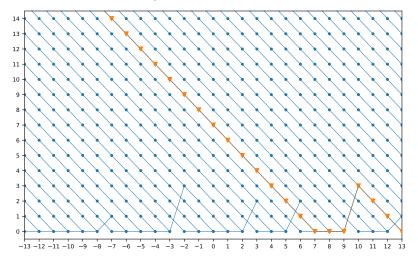
What properties does this Doeblin Graph have?

Unique bi-infinite path?

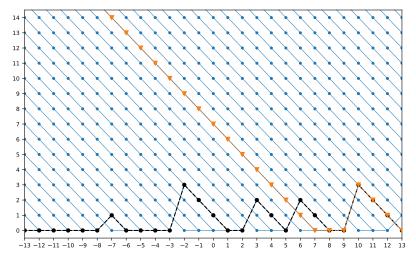
Unique bi-infinite path? No. Fall to 0 then Geom(1/2) jumps.



However, one bi-infinite path here is not like the others.



However, one bi-infinite path here is not like the others.



Bi-recurrence

Definition

A sequence $(x_t)_t$ in S is called **bi-recurrent** if $\{t: x_t = x\}$ is unbounded above and below for all $x \in S$. A random process $(X_t)_{t \in \mathbb{Z}}$ in S is called **bi-recurrent** if a.s. its trajectory is bi-recurrent.

Bi-recurrence

Definition

A sequence $(x_t)_t$ in S is called **bi-recurrent** if $\{t: x_t = x\}$ is unbounded above and below for all $x \in S$. A random process $(X_t)_{t \in \mathbb{Z}}$ in S is called **bi-recurrent** if a.s. its trajectory is bi-recurrent.

In the previous example, we saw the picture had a unique bi-recurrent path $(\beta_t)_t$.

Bi-recurrence

Existence of a unique bi-infinite path in a tree is a consequence of a familiar theorem of random networks, the cardinality classification theorem of vertex-shifts in unimodular networks.

Network $\Gamma \approx$ nonempty, locally finite, connected graph with vertices and edges marked.

Network $\Gamma \approx$ nonempty, locally finite, connected graph with vertices and edges marked.

Random network $[\Gamma, o] \approx$ random element in space of rooted networks up to isomorphism.

Network $\Gamma \approx$ nonempty, locally finite, connected graph with vertices and edges marked.

Random network $[\Gamma, o] \approx$ random element in space of rooted networks up to isomorphism.

Unimodular network \approx random network with root picked "uniformly" (satisfies a mass transport principle).

Network $\Gamma \approx$ nonempty, locally finite, connected graph with vertices and edges marked.

Random network $[\Gamma, o] \approx$ random element in space of rooted networks up to isomorphism.

Unimodular network \approx random network with root picked "uniformly" (satisfies a mass transport principle). I.e. for all measurable $g \ge 0$

$$\mathbb{E} \sum_{\boldsymbol{v} \in V(\boldsymbol{\Gamma})} g[\boldsymbol{\Gamma}, \boldsymbol{o}, \boldsymbol{v}] = \mathbb{E} \sum_{\boldsymbol{v} \in V(\boldsymbol{\Gamma})} g[\boldsymbol{\Gamma}, \boldsymbol{v}, \boldsymbol{o}].$$

Network $\Gamma \approx$ nonempty, locally finite, connected graph with vertices and edges marked.

Random network $[\Gamma, o] \approx$ random element in space of rooted networks up to isomorphism.

Unimodular network \approx random network with root picked "uniformly" (satisfies a mass transport principle). I.e. for all measurable $g \ge 0$

$$\mathbb{E}\sum_{\boldsymbol{v}\in\boldsymbol{V}(\boldsymbol{\Gamma})}g[\boldsymbol{\Gamma},\boldsymbol{o},\boldsymbol{v}]=\mathbb{E}\sum_{\boldsymbol{v}\in\boldsymbol{V}(\boldsymbol{\Gamma})}g[\boldsymbol{\Gamma},\boldsymbol{v},\boldsymbol{o}].$$

Vertex-shift $\Phi \approx$ for each network Γ , Φ_{Γ} is a map from vertices to vertices. Must commute with isomorphisms. Not a random object, it is defined for all networks.

Doebin Graph as a Unimodular Network?

Finite case: OK, independent of the graph, choose root uniformly from states at time 0.

Unsatisfying and doesn't extend to infinite state space.

Doebin Graph as a Unimodular Network?

Finite case: OK, independent of the graph, choose root uniformly from states at time 0.

Unsatisfying and doesn't extend to infinite state space.

Some hurdles in infinite case:

Finite case: OK, independent of the graph, choose root uniformly from states at time 0.

Unsatisfying and doesn't extend to infinite state space.

Some hurdles in infinite case:

1. Local finiteness?

Finite case: OK, independent of the graph, choose root uniformly from states at time 0.

Unsatisfying and doesn't extend to infinite state space.

Some hurdles in infinite case:

1. Local finiteness? Can't fix.

Finite case: OK, independent of the graph, choose root uniformly from states at time 0.

Unsatisfying and doesn't extend to infinite state space.

Some hurdles in infinite case:

- 1. Local finiteness? Can't fix.
- 2. More than one bi-infinite path?

Finite case: OK, independent of the graph, choose root uniformly from states at time 0.

Unsatisfying and doesn't extend to infinite state space.

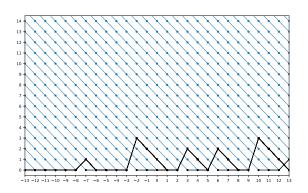
Some hurdles in infinite case:

- 1. Local finiteness? Can't fix.
- 2. More than one bi-infinite path? Can't fix.

Fix state x^* (=0 in the picture).

Definition

The **bridge graph B for state** x^* is the subgraph induced by all paths started in state x^* .



Let \mathbf{B}_t denote the vertical slice of \mathbf{B} sitting at time t. Let $M < \infty$ be the mean return time of a path started in state x^* to return to x^* .

Proposition

For all $t \in \mathbb{Z}$, $\mathbb{E}[\#\mathbf{B}_t] \leq M$. In particular, the bridge graph is locally finite even if the Doeblin graph is not.

Consider vertices (t, y) in bridge graph marked by (y, ξ_t) . Assume **B** is connected for the rest of the talk.

Theorem

Any random network with distribution

$$\mathbb{P}^\square(A) := rac{1}{\mathbb{E}[\#\mathbf{B}_0]}\mathbb{E}\left[\sum_{(0,y)\in V(\mathbf{B})} 1\left\{[\mathbf{B},(0,y)]\in A
ight\}
ight]$$

is unimodular.

Note: \mathbb{P}^{\square} is a size-biased version of original network.

A subset A of rooted networks is **root-invariant** if for all $[\Gamma, o] \in A$ one has $[\Gamma, v] \in A$ for all $v \in V(\Gamma)$.

Lemma

 \mathbb{P}^{\square} and $\mathbb{P}([\mathbf{B},(0,x^*)] \in \cdot)$ have the same root-invariant sets of measure 0 or 1.

- ► "Follow the arrows" defines a vertex-shift, and applied to **B** this vertex-shift draws **B**.
- Can now reap benefits of unimodularity of P□.

- ► "Follow the arrows" defines a vertex-shift, and applied to **B** this vertex-shift draws **B**.
- ▶ Can now reap benefits of unimodularity of \mathbb{P}^{\square} .

Proposition

B has an a.s. unique bi-infinite path $(\beta_t)_t$. This path is bi-recurrent. This is the only bi-recurrent path in all of the larger Doeblin graph. The path is shift-covariant, stationary, and for each t, β_t is measurable with respect to $\sigma(\xi_s:s< t)$. Moreover, $(\beta_t)_t$ is a Markov chain with transition matrix P.

- ► "Follow the arrows" defines a vertex-shift, and applied to **B** this vertex-shift draws **B**.
- ▶ Can now reap benefits of unimodularity of \mathbb{P}^{\square} .

Proposition

B has an a.s. unique bi-infinite path $(\beta_t)_t$. This path is bi-recurrent. This is the only bi-recurrent path in all of the larger Doeblin graph. The path is shift-covariant, stationary, and for each t, β_t is measurable with respect to $\sigma(\xi_s:s< t)$. Moreover, $(\beta_t)_t$ is a Markov chain with transition matrix P.

Note that since $(\beta_t)_t$ is the only bi-recurrent path in the whole Doeblin graph, it does not depend on the state x^* used to generate **B**. Using another x^* would give a different bridge graph that has the same bi-recurrent path.

Recall that P is assumed irreducible, aperiodic, and positive recurrent.

The following is a consequence of the fact that any Markov chain can be embedded as a path in a Doeblin graph.

Theorem

Suppose $(X_t)_{t \in \mathbb{Z}}$ is a Markov chain with transition matrix P. Then $(X_t)_t$ is stationary if and only if it is bi-recurrent. Note that time index set is \mathbb{Z} , not \mathbb{N} .

We saw that in some cases (finite state space) there appears to be a unique bi-infinite path, not just bi-recurrent path, but in other cases there were infinitely many bi-infinite paths.

Definition

Call a bi-infinite path that is not bi-recurrent **spurious**.

We saw that in some cases (finite state space) there appears to be a unique bi-infinite path, not just bi-recurrent path, but in other cases there were infinitely many bi-infinite paths.

Definition

Call a bi-infinite path that is not bi-recurrent **spurious**.

Definition

Say
$$P^n \to \pi$$
 uniformly if $\sup_{x \in S} ||P^n(x, \cdot) - \pi||_{TV} \to 0$ as $n \to \infty$. (Some sources say P is uniformly ergodic.)

Proposition

In fully IID case, if $P^n \to \pi$ uniformly, then the Doeblin graph contains no spurious bi-infinite paths.

Proposition

In fully IID case, if $P^n \to \pi$ uniformly, then the Doeblin graph contains no spurious bi-infinite paths.

Proposition

Suppose $P^n \to \pi$ uniformly, then every Markov chain $(X_t)_{t \in \mathbb{Z}}$ with transition matrix P is stationary and bi-recurrent. The subtle assumption again is that the chain is indexed by \mathbb{Z} , not \mathbb{N} .

The previous result is a partial converse to the well known result that stationary sequence indexed on $\mathbb N$ can be extended to $\mathbb Z$.

Other bridge graphs

What about bridge graphs generated using a different x^* ?.

Proposition

In the fully IID case, if S is infinite, and if the Doeblin graph is locally finite and contains no spurious bi-infinite paths, then the intersection of all bridge graphs using different values of x^* is exactly the bi-recurrent path.

On the other hand, if S is finite and has ≥ 2 states, then there is a.s. more.

Things left out

In the arxiv paper "Doeblin Trees", you may also find results on:

- Local weak convergence to bridge graph by finite networks.
- ► Vertical slices of bridge graph are themselves a Markov chain with recurrence known to compute its transition matrix.
- Many mass transport relationships amongst objects discussed.
- Non Markov case and no need for connectedness (irreducible, aperiodic) assumption.

References

- [1] Baccelli, F., Haji-Mirsadeghi, M.-O., and Murphy. J.: Doeblin Trees (2018). arXiv preprint.
- [2] Propp, J. and Wilson D.: Exact sampling with coupled Markov chains and applications to statistical mechanics (1996).
- [3] Stochastically recursive sequences and their generalizations (1992).
- [4] Foss, S. and Tweedie R.: Perfect simulation and backwards coupling (1998).