Exact Coupling of Random Walks on Polish Groups (arXiv:1706.06968)

James T. Murphy III

Department of Mathematics at The University of Texas at Austin jamesmurphy@math.utexas.edu https://intfxdx.com

Main Question

How does changing the starting location of a (discrete time) random walk change its long-term behavior?

Starting location doesn't matter for:

- N(0,1) steps on \mathbb{R} ,
- if the random walk has stationary distribution.

Starting location does matter for:

• symmetric steps of size 2 on \mathbb{Z} , because the walk will always stay on evens or always stay on odds.

Main Question Reframed

For which $x \in G$ does there exist a successful exact coupling of S and S^{x} ?

Theorem (Results)

- (a) S and S^x admit a successful exact coupling iff there is $n \ge 1$ such that $\mu^n \wedge \mu^n(x + \cdot) \neq 0$,
- (b) if G is locally compact with Haar measure λ , and if S and S^x

Introduction

Let G be an Abelian Polish group. Let $S = \{S_n\}_{n=0}^{\infty}$ be a random walk on G started at 0 with **step-length distribution** μ ,

$$S_n = X_1 + X_2 + \cdots + X_n, \qquad 0 \leq n < \infty$$

where $\{X_i\}_{i=1}^{\infty}$ are i.i.d. random elements in G with distribution μ .

Let
$$S^x = \{S_n^x\}_{n=0}^\infty$$
 be a version of S started at $x \in G$,
 $S_n^x = x + X_1' + X_2' + \dots + X_n', \qquad 0 \leq n < \infty$

where $\{X'_i\}_{i=1}^{\infty}$ are also i.i.d with distribution μ .

Then one is interested in for what values of $x \in G$ does

 $\|\mathbf{P}(S_n \in \cdot) - \mathbf{P}(S_n^x \in \cdot)\|_{TV} \to 0$ as $n \to \infty$? Here $\|\nu\|_{TV} := \sup_F \nu(F) - \inf_F \nu(F)$ is total variation.

Total variation convergence in this setting is equivalent to admitting a **successful exact coupling**: define S and S^x on a common space $(\Omega, \mathcal{F}, \mathbf{P})$ such that there is an a.s. finite time T with

$$S_n=S_n^x, \qquad n\geqslant T.$$

The coupling inequality shows obvious direction,

$$|\mathbf{P}(S_n \in \cdot) - \mathbf{P}(S_n^x \in \cdot)| \leq \mathbf{P}(T > n),$$

which gives a uniform bound in terms of n. The other direction is tricky, but known in general.

- admit a successful exact coupling for all $x \in G$, then μ is spread out, i.e. there is $n \ge 1$ such that $\mu^n \ge \int_{\Omega} f \, d\lambda$ for some Borel $f \ge 0$ not λ -a.e. zero. If G is connected, the converse holds as well.
- (c) if μ is purely atomic with A the set of atoms of μ , then S and S^x admit a successful exact coupling iff x is in the subgroup generated by A A.
- (d) the set of x for which S and S^x admit a successful exact coupling is a Borel measurable subgroup of G.

Note: (b) and (c) were already known in the case $G = \mathbb{R}$. Results for non-Abelian G appear in the arXiv paper.

Proof Idea

If $\mu^n \ge \nu + \nu(x + \cdot)$ for some nonzero measure ν , one may construct a coupling of (S, S^x) for which the difference walk $\{S_{kn} - S_{kn}^x\}_{k \in \mathbb{N}}$ is a symmetric random walk on the cyclic subgroup generated by x. Thus the analysis reduces to that of \mathbb{Z} or $\mathbb{Z}/d\mathbb{Z}$. It then suffices to characterize when such a measure ν exists.

References

[1] Hermann Thorisson.

Open problems in renewal, coupling and palm theory. *Queueing Systems*, 68(3-4):313–319, 2011.

[2] Örn Arnaldsson.

On coupling of discrete random walks on the line, 2010.

[3] Hermann Thorisson.

Coupling, stationarity, and regeneration, volume 200. Springer New York, 2000.

Figure 1:A realization of a successful exact coupling. Two random walks started in different locations (marked by vertical bars) eventually merge.

[4] Henry CP Berbee.

Random walks with stationary increments and renewal theory. *MC Tracts*, 112:1–223, 1979.

[5] AJ Stam.

On shifting iterated convolutions i. *Compositio Math*, 17:268–280, 1966.

[6] Horst Herrmann.

Glättungseigenschaften der Faltung. 1965.

Acknowledgements

This work was supported by a grant of the Simons Foundation (#197982 to The University of Texas at Austin).